Как рассчитать критерий пирсона excel

Функция ПИРСОН (вводить следует PEARSON на английском) предназначена для вычисления коэффициента корреляции Пирсона r. Данную функцию используют в работе в том случае, когда необходимо отразить степень линейной зависимости между двумя массивами данных. В Excel имеется несколько функций с помощью которых можно получить такой же результат, однако универсальность и простота функции Пирсон делают выбор в ее пользу.

Как работает функция ПИРСОН в Excel?

Рассмотрим пример расчета корреляции Пирсона между двумя массивами данных при помощи функции PEARSON в MS EXCEL. Первый массив представляет собой значения температур, второй давление в определенный летний период. Пример заполненной таблицы изображен на рисунке:

Пример заполненной таблицы.

Задача следующая: необходимо определить взаимосвязь между температурой и давлением за июнь месяц.

Пример решения с функцией ПИРСОН при анализе в Excel

  1. Выберем ячейку С17 в которой должен будет посчитаться критерий Пирсона как результат и нажмем кнопку мастер функций «fx» или комбинацию горячих клавиш (SHIFT+F3). Откроется мастер функций, в поле Категория необходимо выбрать «Статистические». В списке статистических функций выбрать PEARSON и нажать Ok:
  2. Статистические.

  3. В меню аргументов выбрать Массив 1, в примере это утренняя температура воздуха, а затем массив 2 – атмосферное давление.
  4. PEARSON.

  5. В результате в ячейке С17 получим коэффициент корреляции Пирсона. В нашем случае он отрицательный и приблизительно равен -0,14.
  6. коэффициент корреляции Пирсона.

Данный показатель -0,14 по Пирсону, который вернула функция, говорит об неблагоприятной зависимости температуры и давления в раннее время суток.



Функция ПИРСОН пошаговая инструкция

Коэффициент корреляции является самым удобным показателем сопряженности количественных признаков.

Задача: Определить линейный коэффициент корреляции Пирсона.

Пример решения:

  1. В таблице приведены данные для группы курящих людей. Первый массив х — представляет собой возраст курящего, второй массив y представляет собой количество сигарет, выкуренных в день.
  2. В таблице приведены данные.

  3. Выберем ячейку В4 в которой должен будет посчитаться результат и нажмем кнопку мастер функций fx (SHIFT+F3).
  4. В группе Статистические выберем функцию PEARSON.
  5. Выделим Массив 1 – возраст курящего, затем Массив 2 – число сигарет, выкуренных в день.
  6. Массив 1 и 2.

  7. Нажмем кнопку ОК и увидим критерий нормального распределения Пирсона в ячейке В4.
  8. распределения Пирсона.

Таким образом, по результату вычисления статистическим выводом эксперимента выявлена отрицательная зависимость между возрастом и количеством выкуренных сигарет в день.

Корреляционный анализ по Пирсону в Excel

Задача: школьникам были даны тесты на наглядное и вербальное мышление. Измерялось среднее время решения заданий теста в секундах. Психолога интересует вопрос: существует ли взаимосвязь между временем решения этих задач?

Пример решения: представим исходные данные в виде таблицы:

исходные данные в виде таблицы.

  1. Переходим курсором в ячейку F2. Откроем мастер функций fx (SHIFT+F3) или вводим вручную.
  2. Выберем функцию PEARSON.
  3. Выделим мышкой Массив1, затем Массив 2.
  4. ПИРСОН.

  5. Нажмем ОК и в ячейке F2 получим критерий согласия Пирсона.
  6. критерий согласия Пирсона.

Интерпретация результата вычисления по Пирсону

Величина коэффициента линейной корреляции Пирсона не может превышать +1 и быть меньше чем -1. Эти два числа +1 и -1 – являются границами для коэффициента корреляции. Когда при расчете получается величина большая +1 или меньшая -1 – следовательно, произошла ошибка в вычислениях.

Если коэффициент корреляции по модулю оказывается близким к 1, то это соответствует высокому уровню связи между переменными.

Скачать примеры функции ПИРСОН для корреляции в Excel

Если же получен знак минус, то большей величине одного признака соответствует меньшая величина другого. Иначе говоря, при наличии знака минус, увеличению одной переменной (признака, значения) соответствует уменьшение другой переменной. Такая зависимость носит название обратно пропорциональной зависимости. Эти положения очень важно четко усвоить для правильной интерпретации полученной корреляционной зависимости.

Excel для Microsoft 365 Excel для Microsoft 365 для Mac Excel для Интернета Excel 2021 Excel 2021 для Mac Excel 2019 Excel 2019 для Mac Excel 2016 Excel 2016 для Mac Excel 2013 Excel 2010 Excel 2007 Excel для Mac 2011 Excel Starter 2010 Еще…Меньше

В этой статье описаны синтаксис формулы и использование функции PEARSON в Microsoft Excel.

Описание

Возвращает коэффициент корреляции Пирсона (r) — безразмерный индекс в интервале от -1,0 до 1,0 включительно, который отражает степень линейной зависимости между двумя множествами данных.

Синтаксис

PEARSON(массив1;массив2)

Аргументы функции PEARSON описаны ниже.

  • Массив1    Обязательный. Множество независимых значений.

  • Массив2    Обязательный. Множество зависимых значений.

Замечания

  • Аргументы должны быть либо числами, либо содержащими числа именами, массивами или ссылками.

  • Если аргумент, который является массивом или ссылкой, содержит тексты, логические значения или пустые ячейки, то такие значения игнорируются; однако ячейки, которые содержат нулевые значения, учитываются.

  • Если массив1 или массив2 пуст, либо число точек данных в этих массивах не совпадает, функция PEARSON возвращает значение ошибки #Н/Д.

  • Коэффициента корреляции Пирсона (r) вычисляется по следующей формуле:

    Уравнение

    где x и y — выборочные средние значения СРЗНАЧ(массив1) и СРЗНАЧ(массив2).

Пример

Скопируйте образец данных из следующей таблицы и вставьте их в ячейку A1 нового листа Excel. Чтобы отобразить результаты формул, выделите их и нажмите клавишу F2, а затем — клавишу ВВОД. При необходимости измените ширину столбцов, чтобы видеть все данные.

Данные

Независимые значения

Зависимые значения

9

10

7

6

5

1

3

5

1

3

Формула

Описание (результат)

Результат

=PEARSON(A3:A7;B3:B7)

Коэффициент корреляции Пирсона для приведенных выше данных (0,699379)

0,699379

Нужна дополнительная помощь?


Рассмотрим применение в

MS

EXCEL

критерия хи-квадрат Пирсона для проверки простых гипотез.

После получения экспериментальных данных (т.е. когда имеется некая

выборка

) обычно производится выбор закона распределения, наиболее хорошо описывающего случайную величину, представленную данной

выборкой

. Проверка того, насколько хорошо экспериментальные данные описываются выбранным теоретическим законом распределения, осуществляется с использованием

критериев согласия

.

Нулевой гипотезой

, обычно выступает гипотеза о равенстве распределения случайной величины некоторому теоретическому закону.

Сначала рассмотрим применение

критерия согласия Пирсона Х

2

(хи-квадрат)

в отношении простых гипотез (параметры теоретического распределения считаются известными). Затем —

применение критерияв случае сложных гипотез

, когда задается только форма распределения, а параметры этого распределения и значение

статистики

Х

2

оцениваются/рассчитываются на основании одной и той же

выборки

.


Примечание

: Применение

критерия согласия Пирсона

Х

2

в отношении сложных гипотез см. статью

Проверка сложных гипотез критерием хи-квадрат Пирсона в MS EXCEL

.


Примечание

: В англоязычной литературе процедура применения

критерия согласия Пирсона

Х

2

имеет название

The chi-square goodness of fit test

.

Напомним процедуру проверки гипотез:

  • на основе

    выборки

    вычисляется значение

    статистики

    , которая соответствует типу проверяемой гипотезы. Например, для

    проверки гипотезы о равенстве среднего μ некоторому заданному значению μ

    0

    используется

    t

    -статистика

    (если

    стандартное отклонение

    не известно);

  • при условии истинности

    нулевой гипотезы

    , распределение этой

    статистики

    известно и может быть использовано для вычисления вероятностей (например, для

    t

    -статистики

    это

    распределение Стьюдента

    );

  • вычисленное на основе

    выборки

    значение

    статистики

    сравнивается с критическим для заданного

    уровня значимости

    значением (

    α-квантилем

    );


  • нулевую гипотезу

    отвергают, если значение

    статистики

    больше критического (или если вероятность получить это значение

    статистики

    (

    p-значение

    ) меньше

    уровня значимости

    , что является эквивалентным подходом).

Проведем

проверку гипотез

для различных распределений.

Дискретный случай

Предположим, что два человека играют в кости. У каждого игрока свой набор костей. Игроки по очереди кидают сразу по 3 кубика. Каждый раунд выигрывает тот, кто выкинет за раз больше шестерок. Результаты записываются. У одного из игроков после 100 раундов возникло подозрение, что кости его соперника – несимметричные, т.к. тот часто выигрывает (часто выбрасывает шестерки). Он решил проанализировать насколько вероятно такое количество исходов противника.


Примечание

: Т.к. кубиков 3, то за раз можно выкинуть 0; 1; 2 или 3 шестерки, т.е. случайная величина может принимать 4 значения.

Из теории вероятности нам известно, что если кубики симметричные, то вероятность выпадения шестерок подчиняется

биномиальному закону

. Поэтому, после 100 раундов частоты выпадения шестерок могут быть вычислены с помощью формулы

=БИНОМ.РАСП(A7;3;1/6;ЛОЖЬ)*100

В формуле предполагается, что в ячейке

А7

содержится соответствующее количество выпавших шестерок в одном раунде.


Примечание

: Расчеты приведены в

файле примера на листе Дискретное

.

Для сравнения

наблюденных

(Observed) и

теоретических частот

(Expected) удобно пользоваться

гистограммой

.

При значительном отклонении наблюденных частот от теоретического распределения,

нулевая гипотеза

о распределении случайной величины по теоретическому закону, должна быть отклонена. Т.е., если игральные кости соперника несимметричны, то наблюденные частоты будут «существенно отличаться» от

биномиального распределения

.

В нашем случае на первый взгляд частоты достаточно близки и без вычислений сложно сделать однозначный вывод. Применим

критерий согласия Пирсона Х

2

, чтобы вместо субъективного высказывания «существенно отличаться», которое можно сделать на основании сравнения

гистограмм

, использовать математически корректное утверждение.

Используем тот факт, что в силу

закона больших чисел

наблюденная частота (Observed) с ростом объема

выборки

n стремится к вероятности, соответствующей теоретическому закону (в нашем случае,

биномиальному закону

). В нашем случае объем выборки n равен 100.

Введем

тестовую

статистику

, которую обозначим Х

2

:

где O

l

– это наблюденная частота событий, что случайная величина приняла определенные допустимые значения, E

l

– это соответствующая теоретическая частота (Expected). L – это количество значений, которые может принимать случайная величина (в нашем случае равна 4).


Примечание

: Вышеуказанная

статистика

является частным случаем

статистики

используемой для вычисления

критерия независимости хи-квадрат

(см. статью

Критерий независимости хи-квадрат в MS EXCEL

).

Как видно из формулы, эта

статистика

является мерой близости наблюденных частот к теоретическим, т.е. с помощью нее можно оценить «расстояния» между этими частотами. Если сумма этих «расстояний» «слишком велика», то эти частоты «существенно отличаются». Понятно, что если наш кубик симметричный (т.е. применим

биномиальный закон

), то вероятность того, что сумма «расстояний» будет «слишком велика» будет малой. Чтобы вычислить эту вероятность нам необходимо знать распределение

статистики

Х

2

(

статистика

Х

2

вычислена на основе случайной

выборки

, поэтому она является случайной величиной и, следовательно, имеет свое

распределение вероятностей

).

Из многомерного аналога

интегральной теоремы Муавра-Лапласа

известно, что при n—>∞ наша случайная величина Х

2

асимптотически

распределена по закону Х

2

с L — 1 степенями свободы.

Итак, если вычисленное значение

статистики

Х

2

(сумма «расстояний» между частотами) будет больше чем некое предельное значение, то у нас будет основание отвергнуть

нулевую гипотезу

. Как и при проверке

параметрических гипотез

, предельное значение задается через

уровень значимости

. Если вероятность того, что статистика Х

2

примет значение меньше или равное вычисленному (

p

-значение

), будет меньше

уровня значимости

, то

нулевую гипотезу

можно отвергнуть.

В нашем случае, значение статистики равно 22,757. Вероятность, что статистика Х

2

примет значение больше или равное 22,757 очень мала (0,000045) и может быть вычислена по формулам

=ХИ2.РАСП.ПХ(22,757;4-1)

или

=ХИ2.ТЕСТ(Observed; Expected)


Примечание

: Функция

ХИ2.ТЕСТ()

специально создана для проверки связи между двумя категориальными переменными (см.

статью про критерий независимости

).

Вероятность 0,000045 существенно меньше обычного

уровня значимости

0,05. Так что, у игрока есть все основания подозревать своего противника в нечестности (

нулевая гипотеза

о его честности отвергается).

При применении

критерия Х

2

необходимо следить за тем, чтобы объем

выборки

n был достаточно большой, иначе будет неправомочна аппроксимация

Х

2

-распределением

распределения

статистики Х

2

. Обычно считается, что для этого достаточно, чтобы наблюденные частоты (Observed) были больше 5. Если это не так, то малые частоты объединяются в одно или присоединяются к другим частотам, причем объединенному значению приписывается суммарная вероятность и, соответственно, уменьшается число степеней свободы

Х

2

-распределения

.

Для того чтобы улучшить качество применения

критерия Х

2

(

увеличить его мощность

), необходимо уменьшать интервалы разбиения (увеличивать L и, соответственно, увеличивать количество

степеней свободы

), однако этому препятствует ограничение на количество попавших в каждый интервал наблюдений (д.б.>5).


Примечание

: Рассмотренный выше пример является частным случаем применения

критерия независимости хи-квадрат

(chi-square test), который позволяет определить есть ли связь между двумя категориальными переменными (см. статью

Критерий независимости хи-квадрат в MS EXCEL

).


СОВЕТ

: О проверке других видов гипотез см. статью

Проверка статистических гипотез в MS EXCEL

.

Непрерывный случай


Критерий согласия Пирсона

Х

2

можно применить так же в случае

непрерывного распределения

.

Рассмотрим некую

выборку

, состоящую из 200 значений.

Нулевая гипотеза

утверждает, что

выборка

сделана из

стандартного нормального распределения

.


Примечание

: Cлучайные величины в

файле примера на листе Непрерывное

сгенерированы с помощью формулы

=НОРМ.СТ.ОБР(СЛЧИС())

. Поэтому, новые значения

выборки

генерируются при каждом пересчете листа.

Соответствует ли имеющийся набор данных

нормальному распределению

можно визуально оценить

с помощью графика проверки на нормальность (normal probability plot)

.

Как видно из диаграммы, значения выборки довольно хорошо укладываются вдоль прямой. Однако, как и в

дискретном случае

для

проверки гипотезы

применим

Критерий согласия Пирсона Х

2

.

Для этого разобьем диапазон изменения случайной величины на интервалы с шагом 0,5

стандартных отклонений

. Вычислим наблюденные и теоретические частоты. Наблюденные частоты вычислим с помощью функции

ЧАСТОТА()

, а теоретические – с помощью функции

НОРМ.СТ.РАСП()

.


Примечание

: Как и для

дискретного случая

, необходимо следить, чтобы

выборка

была достаточно большая, а в интервал попадало >5 значений.

Вычислим статистику Х

2

и сравним ее с критическим значением для заданного

уровня значимости

(0,05). Т.к. мы разбили диапазон изменения случайной величины на 10 интервалов, то число степеней свободы равно 9. Критическое значение можно вычислить по формуле

=ХИ2.ОБР.ПХ(0,05;9)

или

=ХИ2.ОБР(1-0,05;9)

На диаграмме выше видно, что значение статистики равно 8,19, что существенно выше

критического значения



нулевая гипотеза

не отвергается.

Ниже приведена

диаграмма

, на которой

выборка

приняла маловероятное значение и на основании

критерия

согласия Пирсона Х

2

нулевая гипотеза была отклонена (не смотря на то, что случайные значения были сгенерированы с помощью формулы

=НОРМ.СТ.ОБР(СЛЧИС())

, обеспечивающей

выборку

из

стандартного нормального распределения

).


Нулевая гипотеза

отклонена, хотя визуально данные располагаются довольно близко к прямой линии.

В качестве примера также возьмем

выборку

из

непрерывного равномерного распределения

U(-3; 3). В этом случае, даже из графика очевидно, что

нулевая гипотеза

должна быть отклонена.


Критерий

согласия Пирсона Х

2

также подтверждает, что

нулевая гипотеза

должна быть отклонена.

Для того, чтобы рассчитать коэффициент корреляции Пирсона в Excell необходимо сделать следующие шаги:

1.Вносим значения для двух переменных в таблицу (Например Переменная 1 и Переменная 2)

2. Ставим курсор в пустую ячейку

3. На панеле инструментов нажимаем кнопку fx (вставить формулу)

4. В открывшемся окне «Мастер функций» в поле «Категории» выбираем Полный алфавитный перечень

5. Затем в поле «Выберите функцию» находим функцию ПИРСОН

5.1. Нажимаем Ок

6. В открывшемся окне «Аргументы функции» в поле Массив1 вносим номера ячеек, содержащие значения Переменной 1, в поле Массив2 вносим номера ячеек, содержащие значения Переменной2.

7. Нажимаем Ок

8. Смотрим получившийся результат

Correlations are important in many areas of science. Although correlation doesn’t equal causation, it’s often the first step to understanding the true relationship between two variables and can give a valuable hint that there is a causal relationship somewhere.

Learning to calculate a correlation is crucial, and you can easily find the “r value” in Excel using either built-in functions or by working through the calculation in pieces using the more basic functions of the program. The simplest way is using the built-in function, but understanding the calculation is helpful if you ever need to use a different program to find it.

What Is Pearson’s Correlation Coefficient?

Pearson’s correlation coefficient is a simple way of calculating the degree of correlation between two variables, returning a value (called r) ranging from −1 to 1. A perfect correlation (r = 1) between two variables would be where an increase in one variable by a certain amount leads to a correspondingly-sized increase in the other, or vice-versa.

A perfect negative correlation (r = −1) is basically the same, except an increase in one variable leads to a correspondingly-sized decrease in the other. Finally, no correlation whatsoever means there is no relationship at all between two things.

In practice, you’ll almost never see a perfect correlation, and most values will be some decimal value between −1 and 1. So when you find the Pearson r in Excel, the result will usually be some decimal value, where the magnitude of the number tells you the strength of the correlation between your variables.

Pearson Correlation in Excel

The easiest method for finding the Pearson correlation in Excel is using the built-in “Pearson” function or (equivalently) the “Correl” function. The function has a simple syntax: PEARSON(array 1, array 2).

In short, you just need two arrays of values (i.e. columns of results, for example, age and blood pressure arranged so there is a row for each individual patient) that are equal in length, then type “=PEARSON(” into an empty cell, followed by the range of values for the first array, a comma, then the range of values for the second. Then you close out the brackets, hit “Enter” and it will return the r value.

As always, you can highlight the values you want to search for correlations with your mouse or by navigating to the relevant cells with the arrow keys on your keyboard.

You can also use the “Correl” function, which performs the same calculation as “Pearson” and on versions of Excel from 2003 onward, leads to the exact same result. However, if you have an older version of Excel, you should use the “Correl” function because there can be rounding errors with “Pearson.”

Finding Pearson’s r “By Hand”

You can also calculate the r value in Excel in the more traditional method but with the help of the automatic calculations from the program. First, put the values for your variables (which can be referred to as x and y for clarity) in two columns, then create three more columns: xy, x2 and y2. Now multiply each value in the x column by the y column in the xy column (using the cell numbers in the calculation so you can drag it down for the rest of the column), square the x values for the next column, and square the y values for the final one.

Create a “sum” row underneath your data, and take the sum of all the values for each column. You can then use the formula to calculate your r value:

Here, n is the number of pairs of values you have. You can follow this through in pieces: Take the number of pairs of values, multiply it by the sum of your xy column, and then subtract the product of the sums of the x and y values.

Then, multiply the sum of your x2 column by n, subtract the sum of your x column squared, do the same thing for y and multiply these together, then take the square root of the whole thing. Finally, divide the first result by the second to get your r value.

До конца XIX века нормальное распределение считалась всеобщим законом вариации данных. Однако К. Пирсон заметил, что эмпирические частоты могут сильно отличаться от нормального распределения. Встал вопрос, как это доказать. Требовалось не только графическое сопоставление, которое имеет субъективный характер, но и строгое количественное обоснование.

Так был изобретен критерий χ2 (хи квадрат), который проверяет значимость расхождения эмпирических (наблюдаемых) и теоретических (ожидаемых) частот. Это произошло в далеком 1900 году, однако критерий и сегодня на ходу. Более того, его приспособили для решения широкого круга задач. Прежде всего, это анализ категориальных данных, т.е. таких, которые выражаются не количеством, а принадлежностью к какой-то категории. Например, класс автомобиля, пол участника эксперимента, вид растения и т.д. К таким данным нельзя применять математические операции вроде сложения и умножения, для них можно только подсчитать частоты.

Наблюдаемые частоты обозначим О (Observed), ожидаемые – E (Expected). В качестве примера возьмем результат 60-кратного бросания игральной кости. Если она симметрична и однородна, вероятность выпадения любой стороны равна 1/6 и, следовательно, ожидаемое количество выпадения каждой из сторон равна 10 (1/6∙60). Наблюдаемые и ожидаемые частоты запишем в таблицу и нарисуем гистограмму.

Наблюдаемые и ожидаемые частоты

Нулевая гипотеза заключается в том, что частоты согласованы, то есть фактические данные не противоречат ожидаемым. Альтернативная гипотеза – отклонения в частотах выходят за рамки случайных колебаний, расхождения статистически значимы. Чтобы сделать строгий вывод, нам потребуется.

  1. Обобщающая мера расхождения между наблюдаемыми и ожидаемыми частотами.
  2. Распределение этой меры при справедливости гипотезы о том, что различий нет.

Начнем с расстояния между частотами. Если взять просто разницу О — E, то такая мера будет зависеть от масштаба данных (частот). Например, 20 — 5 =15 и 1020 – 1005 = 15. В обоих случаях разница составляет 15. Но в первом случае ожидаемые частоты в 3 раза меньше наблюдаемых, а во втором случае – лишь на 1,5%. Нужна относительная мера, не зависящая от масштаба.

Обратим внимание на следующие факты. В общем случае количество категорий, по которым измеряются частоты, может быть гораздо больше, поэтому вероятность того, что отдельно взятое наблюдение попадет в ту или иную категорию, довольно мала. Раз так, то, распределение такой случайной величины будет подчинятся закону редких событий, известному под названием закон Пуассона. В законе Пуассона, как известно, значение математического ожидания и дисперсии совпадают (параметр λ). Значит, ожидаемая частота для некоторой категории номинальной переменной Ei будет являться одновременное и ее дисперсией. Далее, закон Пуассона при большом количестве наблюдений стремится к нормальному. Соединяя эти два факта, получаем, что, если гипотеза о согласии наблюдаемых и ожидаемых частот верна, то, при большом количестве наблюдений, выражение

Нормированное отклонение частот

имеет стандартное нормальное распределение.

Важно помнить, что нормальность будет проявляться только при достаточно больших частотах. В статистике принято считать, что общее количество наблюдений (сумма частот) должна быть не менее 50 и ожидаемая частота в каждой группе должна быть не менее 5. Только в этом случае величина, показанная выше, имеет стандартное нормальное распределение. Предположим, что это условие выполнено.

У стандартного нормального распределения почти все значение находятся в пределах ±3 (правило трех сигм). Таким образом, мы получили относительную разность в частотах для одной группы. Нам нужна обобщающая мера. Просто сложить все отклонения нельзя – получим 0 (догадайтесь почему). Пирсон предложил сложить квадраты этих отклонений.

Критерий хи-квадрат Пирсона

Это и есть статистика для критерия Хи-квадрат Пирсона. Если частоты действительно соответствуют ожидаемым, то значение статистики Хи-квадрат будет относительно не большим (отклонения находятся близко к нулю). Большое значение статистики свидетельствует в пользу существенных различий между частотами.

«Большой» статистика Хи-квадрат становится тогда, когда появление наблюдаемого или еще большего значения становится маловероятным. И чтобы рассчитать такую вероятность, необходимо знать распределение статистики Хи-квадрат при многократном повторении эксперимента, когда гипотеза о согласии частот верна.

Как нетрудно заметить, величина хи-квадрат также зависит от количества слагаемых. Чем больше слагаемых, тем больше ожидается значение статистики, ведь каждое слагаемое вносит свой вклад в общую сумму. Следовательно, для каждого количества независимых слагаемых, будет собственное распределение. Получается, что χ2 – это целое семейство распределений.

И здесь мы подошли к одному щекотливому моменту. Что такое число независимых слагаемых? Вроде как любое слагаемое (т.е. отклонение) независимо. К. Пирсон тоже так думал, но оказался неправ. На самом деле число независимых слагаемых будет на один меньше, чем количество групп номинальной переменной n. Почему? Потому что, если мы имеем выборку, по которой уже посчитана сумма частот, то одну из частот всегда можно определить, как разность общего количества и суммой всех остальных. Отсюда и вариация будет несколько меньше. Данный факт Рональд Фишер заметил лет через 20 после разработки Пирсоном своего критерия. Даже таблицы пришлось переделывать.

По этому поводу Фишер ввел в статистику новое понятие – степень свободы (degrees of freedom), которое и представляет собой количество независимых слагаемых в сумме. Понятие степеней свободы имеет математическое объяснение и проявляется только в распределениях, связанных с нормальным (Стьюдента, Фишера-Снедекора и сам Хи-квадрат).

Чтобы лучше уловить смысл степеней свободы, обратимся к физическому аналогу. Представим точку, свободно движущуюся в пространстве. Она имеет 3 степени свободы, т.к. может перемещаться в любом направлении трехмерного пространства. Если точка движется по какой-либо поверхности, то у нее уже две степени свободы (вперед-назад, вправо-влево), хотя и продолжает находиться в трехмерном пространстве. Точка, перемещающаяся по пружине, снова находится в трехмерном пространстве, но имеет лишь одну степень свободы, т.к. может двигаться либо вперед, либо назад. Как видно, пространство, где находится объект, не всегда соответствует реальной свободе перемещения.

Примерно также распределение статистики может зависеть от меньшего количества элементов, чем нужно слагаемых для его расчета. В общем случае количество степеней свободы меньше наблюдений на число имеющихся зависимостей. 

Таким образом, распределение хи квадрат (χ2) – это семейство распределений, каждое из которых зависит от параметра степеней свободы. Формальное определение следующее. Распределение χ2 (хи-квадрат) с k степенями свободы — это распределение суммы квадратов k независимых стандартных нормальных случайных величин.

Далее можно было бы перейти к самой формуле, по которой вычисляется функция распределения хи-квадрат, но, к счастью, все давно подсчитано за нас. Чтобы получить интересующую вероятность, можно воспользоваться либо соответствующей статистической таблицей, либо готовой функцией в Excel.

Интересно посмотреть, как меняется форма распределения хи-квадрат в зависимости от количества степеней свободы.

Зависимость формы распределения хи-квадрат от числа степеней свободы

С увеличением степеней свободы распределение хи-квадрат стремится к нормальному. Это объясняется действием центральной предельной теоремы, согласно которой сумма большого количества независимых случайных величин имеет нормальное распределение. Про квадраты там ничего не сказано )).

Проверка гипотезы по критерию Хи квадрат Пирсона 

Вот мы и подошли к проверке гипотез по методу хи-квадрат. В целом техника остается прежней. Выдвигается нулевая гипотеза о том, что наблюдаемые частоты соответствуют ожидаемым (т.е. между ними нет разницы, т.к. они взяты из той же генеральной совокупности). Если этот так, то разброс будет относительно небольшим, в пределах случайных колебаний. Меру разброса определяют по статистике Хи-квадрат. Далее либо полученную статистику сравнивают с критическим значением (для соответствующего уровня значимости и степеней свободы), либо, что более правильно, рассчитывают наблюдаемый p-value, т.е. вероятность получить такое или еще больше значение статистики при справедливости нулевой гипотезы.

Схема проверки гипотезы по методу хи-квадрат

Т.к. нас интересует согласие частот, то отклонение гипотезы произойдет, когда статистика окажется больше критического уровня. Т.е. критерий является односторонним. Однако иногда (иногда) требуется проверить левостороннюю гипотезу. Например, когда эмпирические данные уж оооочень сильно похожи на теоретические. Тогда критерий может попасть в маловероятную область, но уже слева. Дело в том, что в естественных условиях, маловероятно получить частоты, практически совпадающие с теоретическими. Всегда есть некоторая случайность, которая дает погрешность. А вот если такой погрешности нет, то, возможно, данные были сфальсифицированы. Но все же обычно проверяют правостороннюю гипотезу.

Вернемся к задаче с игральной костью. Рассчитаем по имеющимся данным значение статистики критерия хи-квадрат.

Расчет критерия хи-квадрат

Теперь найдем критическое значение при 5-ти степенях свободы (k) и уровне значимости 0,05 (α) по таблице критических значений распределения хи квадрат.

Табличное значение критерия хи-квадрат

То есть квантиль 0,05 хи квадрат распределения (правый хвост) с 5-ю степенями свободы χ20,05; 5 = 11,1.

Сравним фактическое и табличное значение. 3,4 (χ2) < 11,1 (χ20,05; 5). Расчетный значение оказалось меньшим, значит гипотеза о равенстве (согласии) частот не отклоняется. На рисунке ситуация выглядит вот так.

Проверка гипотезы на диаграмме распределения хи-квадрат

Если бы расчетное значение попало в критическую область, то нулевая гипотеза была бы отклонена.

Более правильным будет рассчитать еще и p-value. Для этого нужно в таблице найти ближайшее значение для заданного количества степеней свободы и посмотреть соответствующий ему уровень значимости. Но это прошлый век. Воспользуемся ЭВМ, в частности MS Excel. В эксель есть несколько функций, связанных с хи-квадрат.

Функции Excel, связанные с критерием хи-квадрат

Ниже их краткое описание.

ХИ2.ОБР – критическое значение Хи-квадрат при заданной вероятности слева (как в статистических таблицах)

ХИ2.ОБР.ПХ – критическое значение при заданной вероятности справа. Функция по сути дублирует предыдущую. Но здесь можно сразу указывать уровень α, а не вычитать его из 1. Это более удобно, т.к. в большинстве случаев нужен именно правый хвост распределения.

ХИ2.РАСП – p-value слева (можно рассчитать плотность).

ХИ2.РАСП.ПХ – p-value справа.

ХИ2.ТЕСТ – по двум диапазонам частот сразу проводит тест хи-квадрат. Количество степеней свободы берется на одну меньше, чем количество частот в столбце (так и должно быть), возвращая значение p-value.

Давайте пока рассчитаем для нашего эксперимента критическое (табличное) значение для 5-ти степеней свободы и альфа 0,05. Формула Excel будет выглядеть так:

=ХИ2.ОБР(0,95;5)

Или так

=ХИ2.ОБР.ПХ(0,05;5)

Результат будет одинаковым – 11,0705. Именно это значение мы видим в таблице (округленное до 1 знака после запятой).

Рассчитаем, наконец, p-value для 5-ти степеней свободы критерия χ2 = 3,4. Нужна вероятность справа, поэтому берем функцию с добавкой ПХ (правый хвост)

=ХИ2.РАСП.ПХ(3,4;5) = 0,63857

Значит, при 5-ти степенях свободы вероятность получить значение критерия χ2 = 3,4 и больше равна почти 64%. Естественно, гипотеза не отклоняется (p-value больше 5%), частоты очень хорошо согласуются.

А теперь проверим гипотезу о согласии частот с помощью теста хи квадрат и функции Excel ХИ2.ТЕСТ.

Никаких таблиц, никаких громоздких расчетов. Указав в качестве аргументов функции столбцы с наблюдаемыми и ожидаемыми частотами, сразу получаем p-value. Красота.

Представим теперь, что вы играете в кости с подозрительным типом. Распределение очков от 1 до 5 остается прежним, но он выкидывает 26 шестерок (количество всех бросков становится 78).

Отклонение гипотезы о согласованности частот

p-value в этом случае оказывается 0,003, что гораздо меньше чем, 0,05. Есть серьезные основания сомневаться в правильности игральной кости. Вот, как выглядит эта вероятность на диаграмме распределения хи-квадрат.

Отклонение нулевой гипотезы

Статистика критерия хи-квадрат здесь получается 17,8, что, естественно, больше табличного (11,1).

Надеюсь, мне удалось объяснить, что такое критерий согласия χ2 (хи-квадрат) Пирсона и как с его помощью проверяются статистические гипотезы.

Напоследок еще раз о важном условии! Критерий хи-квадрат исправно работает только в случае, когда количество всех частот превышает 50, а минимальное ожидаемое значение для каждой группы не меньше 5. Если в какой-либо категории ожидаемая частота менее 5, но при этом сумма всех частот превышает 50, то такую категорию объединяют с ближайшей, чтобы их общая частота превысила 5. Если это сделать невозможно, или сумма частот меньше 50, то следует использовать более точные методы проверки гипотез. О них поговорим в другой раз.

Ниже находится видео ролик о том, как в Excel проверить гипотезу с помощью критерия хи-квадрат.

Скачать файл с примером.

Поделиться в социальных сетях:

Содержание:

  1. Что такое коэффициент корреляции?
  2. Расчет коэффициента корреляции в Excel
  3. Использование формулы CORREL
  4. Использование пакета инструментов анализа данных
  5. Включение пакета инструментов анализа данных
  6. Расчет коэффициента корреляции с помощью пакета Data Analysis Toolpak

Excel — это мощный инструмент, обладающий удивительными функциями и возможностями при работе со статистикой.

Поиск корреляции между двумя рядами данных — один из наиболее распространенных статистических расчетов при работе с большими наборами данных.

Несколько лет назад я работал финансовым аналитиком, и, хотя мы не принимали активного участия в статистических данных, обнаружение корреляции было тем, что нам все же приходилось делать довольно часто.

В этом уроке я покажу вам два действительно простых способа рассчитать коэффициент корреляции в Excel. Для этого уже есть встроенная функция, и вы также можете использовать Data Analysis Toolpak.

Итак, приступим!

Что такое коэффициент корреляции?

Поскольку это не статистический класс, позвольте мне вкратце объяснить, что такое коэффициент корреляции, а затем мы перейдем к разделу, где рассчитываем коэффициент корреляции в Excel.

Коэффициент корреляции — это значение, которое показывает, насколько тесно связаны два ряда данных.

Часто используемый пример — это вес и рост 10 человек в группе. Если мы рассчитаем коэффициент корреляции для данных о росте и весе этих людей, мы получим значение от -1 до 1.

Значение меньше нуля указывает на отрицательную корреляцию, что означает, что если рост увеличивается, то вес уменьшается, или если вес увеличивается, тогда рост уменьшается.

А значение больше нуля указывает на положительную корреляцию, что означает, что если рост увеличивается, то увеличивается вес, а если рост уменьшается, то вес уменьшается.

Чем ближе значение к 1, тем сильнее положительная корреляция. Таким образом, значение 0,8 будет означать, что данные о росте и весе сильно коррелированы.

Примечание. Существуют разные типы коэффициентов корреляции и статистики, но в этом руководстве мы рассмотрим наиболее распространенный из них — коэффициент корреляции Пирсона.

Теперь давайте посмотрим, как рассчитать этот коэффициент корреляции в Excel.

Расчет коэффициента корреляции в Excel

Как я уже упоминал, есть несколько способов рассчитать коэффициент корреляции в Excel.

Использование формулы CORREL

CORREL — это статистическая функция, представленная в Excel 2007.

Предположим, у вас есть набор данных, показанный ниже, где вы хотите рассчитать коэффициент корреляции между ростом и весом 10 человек.

Ниже приведена формула, которая сделает это:
= КОРРЕЛЬ (B2: B12; C2: C12)

Вышеупомянутая функция CORREL принимает два аргумента — серию с точками данных роста и серию с точками данных веса.

И это все!

Как только вы нажмете клавишу ВВОД, Excel выполнит все вычисления в серверной части и выдаст вам один единственный коэффициент корреляции Пирсона.

В нашем примере это значение немного больше 0,5, что указывает на довольно сильную положительную корреляцию.

Этот метод лучше всего использовать, если у вас есть две серии и все, что вам нужно, — это коэффициент корреляции.

Но если у вас есть несколько рядов, и вы хотите узнать коэффициент корреляции всех этих рядов, вы также можете рассмотреть возможность использования пакета инструментов анализа данных в Excel (рассматривается далее).

Использование пакета инструментов анализа данных

В Excel есть пакет инструментов для анализа данных, который можно использовать для быстрого расчета различных значений статистики (включая получение коэффициента корреляции).

Но пакет инструментов анализа данных в Excel по умолчанию отключен. Итак, первым шагом было бы снова включить инструмент анализа данных, а затем использовать его для расчета коэффициента корреляции Пирсона в Excel.

Включение пакета инструментов анализа данных

Ниже приведены шаги по включению пакета инструментов анализа данных в Excel:

  1. Перейдите на вкладку Файл.
  2. Нажмите на Параметры
  3. В открывшемся диалоговом окне «Параметры Excel» щелкните параметр «Надстройки» на боковой панели.
  4. В раскрывающемся списке «Управление» выберите надстройки Excel.
  5. Щелкните Go. Откроется диалоговое окно надстроек.
  6. Отметьте опцию Analysis Toolpak
  7. Нажмите ОК

Вышеупомянутые шаги добавят новую группу на вкладке «Данные» на ленте Excel под названием «Анализ». В этой группе у вас будет опция анализа данных

Расчет коэффициента корреляции с помощью пакета Data Analysis Toolpak

Теперь, когда инструмент анализа снова доступен на ленте, давайте посмотрим, как с его помощью рассчитать коэффициент корреляции.

Предположим, у вас есть набор данных, как показано ниже, и вы хотите выяснить корреляцию между тремя рядами (рост и вес, рост и доход, вес и доход).

Ниже приведены шаги для этого:

  1. Перейдите на вкладку «Данные».
  2. В группе «Анализ» выберите параметр «Анализ данных».
  3. В открывшемся диалоговом окне «Анализ данных» нажмите «Корреляция».
  4. Щелкните ОК. Откроется диалоговое окно «Корреляция».
  5. Для диапазона ввода выберите три серии, включая заголовки.
  6. Убедитесь, что для параметра «Сгруппировано по» выбрано «Столбцы».
  7. Выберите вариант — «Ярлык в первой строке». Это гарантирует, что в результирующих данных будут одинаковые заголовки, и будет намного легче понять результаты.
  8. В параметрах вывода выберите, где вы хотите получить результирующую таблицу. Я собираюсь использовать ячейку G1 на том же листе. Вы также можете получить результаты на новом листе или в новой книге.
  9. Нажмите ОК.

Как только вы это сделаете, Excel вычислит коэффициент корреляции для всех серий и выдаст вам таблицу, как показано ниже:

Обратите внимание, что результирующая таблица является статической и не будет обновляться в случае изменения какой-либо точки данных в вашей таблице. В случае каких-либо изменений вам придется повторить вышеуказанные шаги еще раз, чтобы сгенерировать новую таблицу коэффициентов корреляции.

Итак, это два быстрых и простых метода расчета коэффициента корреляции в Excel.

Надеюсь, вы нашли этот урок полезным!



В статье рассматривается процедура создания шаблона Excel и опыт его применения для автоматического построения гистограмм и кривых Гаусса по результатам данных экспериментальных наблюдений с одновременной оценкой согласия по критерию Пирсона в учебном процессе. Показываются преимущества данного метода перед ручным счетом по проверке рассмотренного критерия.

Ключевые слова: шаблон Excel, гистограмма, кривая распределения, критерий согласия Пирсона

В современном мире к статистике проявляется большой интерес, поскольку это отличный инструмент для анализа и принятия решений, а также это отличное средство для поиска причин нарушений процесса и их устранения. Статистический анализ применим во многих сферах, где существуют большие массивы данных: металлургии, а также в экономике, биологии, политике, социологии и т. д. Рассмотрим использование некоторых средств статистического анализа, а именно — гистограмм для обработки больших массивов данных.

Целью первичной обработки экспериментальных наблюдений обычно является выбор закона распределения, наиболее хорошо описывающего случайную величину, выборку которой мы наблюдали. Проверка того, насколько хорошо наблюдаемая выборка описывается теоретическим законом, осуществляется с использованием различных критериев согласия. Целью проверки гипотезы о согласии опытного распределения с теоретическим является стремление удостовериться в том, что данная модель теоретического закона не противоречит наблюдаемым данным, и использование ее не приведет к существенным ошибкам при вероятностных расчетах. Некорректное использование критериев согласия может приводить к необоснованному принятию или необоснованному отклонению проверяемой гипотезы [1].

Сходимость результатов наблюдений можно оценить наиболее полно, если их распределение является нормальным. Поэтому исключительно важную роль при обработке результатов наблюдений играет проверка нормальности распределения.

Эта задача представляет собой частный случай более общей проблемы, заключающейся в подборе теоретической функции распределения, в некотором смысле наилучшим образом согласующейся с опытными данными. Сама процедура проверки нормальности распределения относится к распространенной стандартной и довольно тривиальной задаче обработки данных и достаточно подробно и широко описана в различной литературе по метрологии и статистической обработке данных измерений [2- 4].

Данные, получаемые в результате измерений при контроле технологических процессов, оценке характеристик различных объектов и др. для дальнейшей обработки желательно представлять в виде теоретического распределения, максимально соответствующего экспериментальному распределению. Проверку гипотезы о виде функции распределения в настоящее время проводят по различным критериям согласия — Пирсона, Колмогорова, Смирнова и другим в соответствии с новыми разработанными нормативными документами — рекомендациями по стандартизации [5, 6].

Наиболее часто используется критерий Пирсона 2. Однако применение критериев согласия требует обычно довольно значительного объёма данных. Так, критерий Пирсона обычно рекомендуется использовать при объёме выборки не менее 50…100. Поэтому при небольшом объёме выборки проверку гипотезы о виде функции распределения проводят приближёнными методами — графическим методом или по асимметрии и эксцессу. Применение критерия Пирсона для ручной обработки данных очень подробно было изложено в известной работе [2]. Как свидетельствует опыт проверок согласия экспериментальных данных с теоретическими по различным критериям, эта процедура является очень трудоемкой, требует некоторой усидчивости и особого внимания при обработке от исследователя, как правило, не исключает ошибок в работе и не вызывает особого энтузиазма у выполняющего эту работу.

Решение задач статистического анализа связано со значительными объемами вычислений. Проведение реальных многовариантных статистических расчетов в ручном режиме является очень громоздкой и трудоемкой задачей и без использования компьютера в настоящее время практически невозможно. В настоящее время разработано достаточное количество универсальных и специализированных программных средств для статистического анализа и обработки экспериментальных данных. Автор предлагает к рассмотрению достаточно простой и эффективный шаблон для быстрого построения гистограммы и кривой нормального распределения.

По виду гистограммы можно предположить (принять гипотезу) о том, что выборка случайных чисел подчиняется нормальному закону распределения. Далее, для того чтобы убедиться в правильности выбранной гипотезы надо, первое — построить график гипотетического нормального закона распределения, выбрав в качестве параметров (математического ожидания и среднего квадратического отклонения) их оценки (среднее и стандартное отклонение), и совместить график гипотетического распределения с графиком гистограммы. И, второе — используя в данном случае, как пример, критерий согласия Пирсона, установить справедливость выбранной гипотезы.

Рассмотрим порядок действий при работе с критерием Пирсона в среде Excel.

1. Полученные в результате измерений значения 100 случайных результатов измерений внести в ячейки A1:A100 шаблона Excel и приступить к построению гистограммы на основе данных, назначая длину интервала (карман) и выбирая необходимое число интервалов.

2. Затем на этом же листе создается таблица, в которую посредством формул Excel вносятся основные расчетные величины, используемые для построения гистограммы и кривой Гаусса: среднее арифметическое, стандартное отклонение, минимальное и максимальное значения выборки, размах, величина кармана (рис. 1).

Безымянный

Рис. 1. Фрагмент таблицы с исходными данными

В ячейку D2 вносится формула =СРЗНАЧ(A1:A100), D3: =СТАНДОТКЛОН(A1:A100), D4: =МИН(A1:A100), D5: =МАКС(A1:A100), D6: =D5-D4, D7: =D6/D8. В ячейку D8 вводится число интервалов, которое для числа измерений, равным 100, может быть принято от 7 до 12.

Для оценки оптимального для нашего массива данных количества интервалов можно воспользоваться формулой Стерджесса: k~1+3,322lgN, где N— количество всех значений величины. Например, для N = 100, n = 7,6, которое должно быль округлено до целого числа, округляем до n = 8.

3. Интервал карманов вычисляют так: разность максимального и минимального значений массива, деленная на количество интервалов: .

4. Теперь в каждой ячейке шаг за шагом прибавляем полученное значение ширины кармана: сначала к минимальному значению нашего массива (ячейка D4), затем в следующей ячейке ниже — к полученной сумме и т. д. Так постепенно доходим до максимального значения. Таким образом, мы и построили интервалы карманов в виде столбца значений.

Интервалом считается следующий диапазон: (i-1; i] или i<значения<=i (нестрогая верхняя граница интервала — это значение в ячейке, нижняя строгая граница — значение в предыдущей ячейке).

5. Выделяем столбец рядом с нашими карманами, нажимаем «F2» и вводим функцию: =ЧАСТОТА (массив данных; диапазон карманов) и нажимаем Ctr+Shift+Enter.

6. В выделенном нами столбце напротив границ интервалов (а мы знаем, что это нестрогие верхние границы) появилось количество значений исходного массива, которые попадают в интервал (рис. 2).

Безымянный-1

Рис. 2. Количество значений исходного массива, попавших в интервалы (частоты)

Построение теоретического закона распределения

Для построения теоретического закона распределения совместно с гистограммой и проверкой согласия по критерию хи-квадрат Пирсона автоматически заполняется таблица 1 после ввода экспериментальных данных в ячейки A1:A100.

Таблица 1

xi

mi

n∙pi

карманы

частота

теоретическая частота

статистика U

Для построения этой таблицы надо воспользоваться таблицей карман — частота процедуры Гистограмма. В этой таблице обозначены:

xi — границы интервалов группировки (карманы — получены как результат выполнения процедуры Гистограмма);

mi — количество элементов выборки, попавших в i–ый интервал (частота — получена в результате процедуры Гистограмма).

Для построения этой таблицы в Excel к столбцам карман — частота процедуры Гистограмма надо добавить столбцы n∙pi (теоретическая частота) и (статистика U).

Проверка согласия эмпирического и теоретического законов распределения по критерию хи-квадрат Пирсона.

В ячейку столбца, помеченного именем U, вводим формулу,

, (1)

Критическое значение статистики U, которая имеет распределениес r степенями свободы (число степеней свободы определяется как число частичных интервалов минус 1), определяется при помощи функции ХИ2ОБР.

Функция ХИ2ОБР вызывается следующим образом. В главном меню Excel выбирается закладка Формулы → Вставить функцию →в диалоговом окне Мастер функций— шаг 1 из 2 вкатегории Статистические →ХИ2ОБР (рис. 3).

http://www.studfiles.ru/html/2706/558/html_BMG66pHKvj.eosI/htmlconvd-dTqvbh_html_m201960a7.png

Рис. 3. Диалоговое окно выбора функции ХИ2ОБР

В диалоговом окне Аргументы функции ХИ2ОБР заполняются поля как показано на рис. 4, задаваясь уровнем значимости (например, 0,05, что соответствует доверительной вероятности Р = 0,95) и предварительно выбрав ячейку для результата вычисления функции.

http://www.studfiles.ru/html/2706/558/html_BMG66pHKvj.eosI/htmlconvd-dTqvbh_html_5cf9dd9f.png

Рис. 4. Диалоговое окно функции ХИ2ОБР с заполненными полями ввода

Размножим формулу (1) в диапазонах ячеек [F12; F20] и [F51; F61]. В ячейке F21 получим сумму содержимого ячеек F12; F20 (рис. 5). В ячейке F62 получим сумму содержимого ячеек F51; F61 (рис. 6).

В ячейке F21 получено значение статистики: U = 2,09, а в ячейке F62 — U = 3,43 при доверительной вероятности Р = 0,95.

Теперь с помощью стандартного инструмента для построения гистограмм («вставка/гистограмма» и т. д.) на этом же листе Excel можно построить гистограммы распределения с кривой Гаусса для разных чисел интервалов (в данном случае n = 8 и n = 10) (рис. 5 и 6).

Безымянный

Рис. 5. Вид гистограммы и кривой распределения при числе интервалов n = 8 (пример)

Безымянный-1

Рис. 6. Вид гистограммы и кривой распределения при числе интервалов n = 10 (пример)

Шаблон позволяет варьировать числом интервалов и величиной кармана, при этом автоматически изменяется внешний вид гистограммы и кривой нормального распределения. Исследователь может подобрать наиболее «красивый» вид гистограммы и аппроксимирующей кривой Гаусса, одновременно изменив значение доверительной вероятности и числа степеней свободы и добившись при этом выполнения критерия Пирсона.

Если значение статистики U оказалось меньше критического значения при заданной доверительной вероятности, то гипотеза, состоящая в том, что исследуемая выборка подчиняется нормальному закону распределения, принимается. Вданном примере значение обеих статистик U оказалось меньше критического значения и Следовательно, мы можем распространить данный закон распределения на всю генеральную совокупность исследуемых объектов (партию изделий, сменную выработку, месячный план и т. д.).

Более подробно указанная тема была рассмотрена в статье автора в сборнике «Законодательная и прикладная метрология» [7].

Выводы

  1. Существовавшая ранее традиционная «ручная» обработка данных при проверке нормального (и других) законов распределения и построении гистограмм являлась достаточно трудоемкой задачей, не исключавшей появление ошибок, обнаружение которых зачастую требовало значительных затрат времени и моральных сил исследователя.
  2. Появление пакетов офисных программ, в частности Excel 2010 и ее последующих версий, позволяет значительно сократить трудоемкость обработки данных и практически исключает появление ошибок в расчетах.

Литература:

1. Лемешко Б. Ю., Постовалов С. Н. О правилах проверки согласия опытного распределения с теоретическим. — Методы менеджмента качества. Надежность и контроль качества. — 1999, № 11. — С. 34–43.

2. Бурдун Г. Д., Марков Б. Н. Основы метрологии. Учебное пособие для вузов. — М.: Изд. стандартов, 1975. — 336 с.

3. Сулицкий В. Н. Методы статистического анализа в управлении: Учеб. пособие. — М.: Дело, 2002. — 520 с.

4. Иванов О. В. Статистика / Учебный курс для социологов и менеджеров. Часть 2. Доверительные интервалы. Проверка гипотез. Методы и их применение. — М.: Изд. МГУ им. М. В. Ломоносова, 2005. — 220 с.

5. Рекомендации по стандартизации Р 50.1.033–2001. Прикладная статистика. Правила проверки согласия опытного распределения с теоретическим. Часть 1. Критерии типа хи-квадрат. — М.: ФГУП «Стандартинформ», 2006. — 87 с.

6. Рекомендации по стандартизации Р 50.1.037–2002. Прикладная статистика. Правила проверки согласия опытного распределения с теоретическим. Часть II. Непараметрические критерии. — М.: ИПК Изд. стандартов, 2002. — 62 с.

7. Фаюстов А. А. Проверка гипотезы о нормальном распределении выборки по критерию согласия Пирсона средствами приложения Excel. — Законодательная и прикладная метрология, 2016, № 6. — С. 3–9.

Основные термины (генерируются автоматически): статистический анализ, критерий согласия, массив данных, вид функции распределения, интервал карманов, максимальное значение, минимальное значение, построение гистограммы, различный критерий согласия, стандартное отклонение.

Понравилась статья? Поделить с друзьями:

А вот еще интересные статьи:

  • Как рассчитать критерий манна уитни в excel
  • Как рассчитать кредит переплаты в excel
  • Как рассчитать количество интервалов в excel
  • Как рассчитать количество значений в excel
  • Как рассчитать количество дней от даты до даты в excel

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии