Содержание
- Варианты решений
- Способ 1: матричный метод
- Способ 2: подбор параметров
- Способ 3: метод Крамера
- Способ 4: метод Гаусса
- Вопросы и ответы
Умение решать системы уравнений часто может принести пользу не только в учебе, но и на практике. В то же время, далеко не каждый пользователь ПК знает, что в Экселе существует собственные варианты решений линейных уравнений. Давайте узнаем, как с применением инструментария этого табличного процессора выполнить данную задачу различными способами.
Варианты решений
Любое уравнение может считаться решенным только тогда, когда будут отысканы его корни. В программе Excel существует несколько вариантов поиска корней. Давайте рассмотрим каждый из них.
Способ 1: матричный метод
Самый распространенный способ решения системы линейных уравнений инструментами Excel – это применение матричного метода. Он заключается в построении матрицы из коэффициентов выражений, а затем в создании обратной матрицы. Попробуем использовать данный метод для решения следующей системы уравнений:
14x1+2x2+8x4=218
7x1-3x2+5x3+12x4=213
5x1+x2-2x3+4x4=83
6x1+2x2+x3-3x4=21
- Заполняем матрицу числами, которые являются коэффициентами уравнения. Данные числа должны располагаться последовательно по порядку с учетом расположения каждого корня, которому они соответствуют. Если в каком-то выражении один из корней отсутствует, то в этом случае коэффициент считается равным нулю. Если коэффициент не обозначен в уравнении, но соответствующий корень имеется, то считается, что коэффициент равен 1. Обозначаем полученную таблицу, как вектор A.
- Отдельно записываем значения после знака «равно». Обозначаем их общим наименованием, как вектор B.
- Теперь для нахождения корней уравнения, прежде всего, нам нужно отыскать матрицу, обратную существующей. К счастью, в Эксель имеется специальный оператор, который предназначен для решения данной задачи. Называется он МОБР. Он имеет довольно простой синтаксис:
=МОБР(массив)Аргумент «Массив» — это, собственно, адрес исходной таблицы.
Итак, выделяем на листе область пустых ячеек, которая по размеру равна диапазону исходной матрицы. Щелкаем по кнопке «Вставить функцию», расположенную около строки формул.
- Выполняется запуск Мастера функций. Переходим в категорию «Математические». В представившемся списке ищем наименование «МОБР». После того, как оно отыскано, выделяем его и жмем на кнопку «OK».
- Запускается окно аргументов функции МОБР. Оно по числу аргументов имеет всего одно поле – «Массив». Тут нужно указать адрес нашей таблицы. Для этих целей устанавливаем курсор в это поле. Затем зажимаем левую кнопку мыши и выделяем область на листе, в которой находится матрица. Как видим, данные о координатах размещения автоматически заносятся в поле окна. После того, как эта задача выполнена, наиболее очевидным было бы нажать на кнопку «OK», но не стоит торопиться. Дело в том, что нажатие на эту кнопку является равнозначным применению команды Enter. Но при работе с массивами после завершения ввода формулы следует не кликать по кнопке Enter, а произвести набор сочетания клавиш Ctrl+Shift+Enter. Выполняем эту операцию.
- Итак, после этого программа производит вычисления и на выходе в предварительно выделенной области мы имеем матрицу, обратную данной.
- Теперь нам нужно будет умножить обратную матрицу на матрицу B, которая состоит из одного столбца значений, расположенных после знака «равно» в выражениях. Для умножения таблиц в Экселе также имеется отдельная функция, которая называется МУМНОЖ. Данный оператор имеет следующий синтаксис:
=МУМНОЖ(Массив1;Массив2)Выделяем диапазон, в нашем случае состоящий из четырех ячеек. Далее опять запускаем Мастер функций, нажав значок «Вставить функцию».
- В категории «Математические», запустившегося Мастера функций, выделяем наименование «МУМНОЖ» и жмем на кнопку «OK».
- Активируется окно аргументов функции МУМНОЖ. В поле «Массив1» заносим координаты нашей обратной матрицы. Для этого, как и в прошлый раз, устанавливаем курсор в поле и с зажатой левой кнопкой мыши выделяем курсором соответствующую таблицу. Аналогичное действие проводим для внесения координат в поле «Массив2», только на этот раз выделяем значения колонки B. После того, как вышеуказанные действия проведены, опять не спешим жать на кнопку «OK» или клавишу Enter, а набираем комбинацию клавиш Ctrl+Shift+Enter.
- После данного действия в предварительно выделенной ячейке отобразятся корни уравнения: X1, X2, X3 и X4. Они будут расположены последовательно. Таким образом, можно сказать, что мы решили данную систему. Для того, чтобы проверить правильность решения достаточно подставить в исходную систему выражений данные ответы вместо соответствующих корней. Если равенство будет соблюдено, то это означает, что представленная система уравнений решена верно.
Урок: Обратная матрица в Excel
Способ 2: подбор параметров
Второй известный способ решения системы уравнений в Экселе – это применение метода подбора параметров. Суть данного метода заключается в поиске от обратного. То есть, основываясь на известном результате, мы производим поиск неизвестного аргумента. Давайте для примера используем квадратное уравнение
3x^2+4x-132=0
- Принимаем значение x за равное 0. Высчитываем соответствующее для него значение f(x), применив следующую формулу:
=3*x^2+4*x-132Вместо значения «X» подставляем адрес той ячейки, где расположено число 0, принятое нами за x.
- Переходим во вкладку «Данные». Жмем на кнопку «Анализ «что если»». Эта кнопка размещена на ленте в блоке инструментов «Работа с данными». Открывается выпадающий список. Выбираем в нем позицию «Подбор параметра…».
- Запускается окно подбора параметров. Как видим, оно состоит из трех полей. В поле «Установить в ячейке» указываем адрес ячейки, в которой находится формула f(x), рассчитанная нами чуть ранее. В поле «Значение» вводим число «0». В поле «Изменяя значения» указываем адрес ячейки, в которой расположено значение x, ранее принятое нами за 0. После выполнения данных действий жмем на кнопку «OK».
- После этого Эксель произведет вычисление с помощью подбора параметра. Об этом сообщит появившееся информационное окно. В нем следует нажать на кнопку «OK».
- Результат вычисления корня уравнения будет находиться в той ячейке, которую мы назначили в поле «Изменяя значения». В нашем случае, как видим, x будет равен 6.
Этот результат также можно проверить, подставив данное значение в решаемое выражение вместо значения x.
Урок: Подбор параметра в Excel
Способ 3: метод Крамера
Теперь попробуем решить систему уравнений методом Крамера. Для примера возьмем все ту же систему, которую использовали в Способе 1:
14x1+2x2+8x4=218
7x1-3x2+5x3+12x4=213
5x1+x2-2x3+4x4=83
6x1+2x2+x3-3x4=21
- Как и в первом способе, составляем матрицу A из коэффициентов уравнений и таблицу B из значений, которые стоят после знака «равно».
- Далее делаем ещё четыре таблицы. Каждая из них является копией матрицы A, только у этих копий поочередно один столбец заменен на таблицу B. У первой таблицы – это первый столбец, у второй таблицы – второй и т.д.
- Теперь нам нужно высчитать определители для всех этих таблиц. Система уравнений будет иметь решения только в том случае, если все определители будут иметь значение, отличное от нуля. Для расчета этого значения в Экселе опять имеется отдельная функция – МОПРЕД. Синтаксис данного оператора следующий:
=МОПРЕД(массив)Таким образом, как и у функции МОБР, единственным аргументом выступает ссылка на обрабатываемую таблицу.
Итак, выделяем ячейку, в которой будет выводиться определитель первой матрицы. Затем жмем на знакомую по предыдущим способам кнопку «Вставить функцию».
- Активируется окно Мастера функций. Переходим в категорию «Математические» и среди списка операторов выделяем там наименование «МОПРЕД». После этого жмем на кнопку «OK».
- Запускается окно аргументов функции МОПРЕД. Как видим, оно имеет только одно поле – «Массив». В это поле вписываем адрес первой преобразованной матрицы. Для этого устанавливаем курсор в поле, а затем выделяем матричный диапазон. После этого жмем на кнопку «OK». Данная функция выводит результат в одну ячейку, а не массивом, поэтому для получения расчета не нужно прибегать к нажатию комбинации клавиш Ctrl+Shift+Enter.
- Функция производит подсчет результата и выводит его в заранее выделенную ячейку. Как видим, в нашем случае определитель равен -740, то есть, не является равным нулю, что нам подходит.
- Аналогичным образом производим подсчет определителей для остальных трех таблиц.
- На завершающем этапе производим подсчет определителя первичной матрицы. Процедура происходит все по тому же алгоритму. Как видим, определитель первичной таблицы тоже отличный от нуля, а значит, матрица считается невырожденной, то есть, система уравнений имеет решения.
- Теперь пора найти корни уравнения. Корень уравнения будет равен отношению определителя соответствующей преобразованной матрицы на определитель первичной таблицы. Таким образом, разделив поочередно все четыре определителя преобразованных матриц на число -148, которое является определителем первоначальной таблицы, мы получим четыре корня. Как видим, они равны значениям 5, 14, 8 и 15. Таким образом, они в точности совпадают с корнями, которые мы нашли, используя обратную матрицу в способе 1, что подтверждает правильность решения системы уравнений.
Способ 4: метод Гаусса
Решить систему уравнений можно также, применив метод Гаусса. Для примера возьмем более простую систему уравнений из трех неизвестных:
14x1+2x2+8x3=110
7x1-3x2+5x3=32
5x1+x2-2x3=17
- Опять последовательно записываем коэффициенты в таблицу A, а свободные члены, расположенные после знака «равно» — в таблицу B. Но на этот раз сблизим обе таблицы, так как это понадобится нам для работы в дальнейшем. Важным условием является то, чтобы в первой ячейке матрицы A значение было отличным от нуля. В обратном случае следует переставить строки местами.
- Копируем первую строку двух соединенных матриц в строчку ниже (для наглядности можно пропустить одну строку). В первую ячейку, которая расположена в строке ещё ниже предыдущей, вводим следующую формулу:
=B8:E8-$B$7:$E$7*(B8/$B$7)Если вы расположили матрицы по-другому, то и адреса ячеек формулы у вас будут иметь другое значение, но вы сможете высчитать их, сопоставив с теми формулами и изображениями, которые приводятся здесь.
После того, как формула введена, выделите весь ряд ячеек и нажмите комбинацию клавиш Ctrl+Shift+Enter. К ряду будет применена формула массива и он будет заполнен значениями. Таким образом мы произвели вычитание из второй строки первой, умноженной на отношение первых коэффициентов двух первых выражений системы.
- После этого копируем полученную строку и вставляем её в строчку ниже.
- Выделяем две первые строки после пропущенной строчки. Жмем на кнопку «Копировать», которая расположена на ленте во вкладке «Главная».
- Пропускаем строку после последней записи на листе. Выделяем первую ячейку в следующей строке. Кликаем правой кнопкой мыши. В открывшемся контекстном меню наводим курсор на пункт «Специальная вставка». В запустившемся дополнительном списке выбираем позицию «Значения».
- В следующую строку вводим формулу массива. В ней производится вычитание из третьей строки предыдущей группы данных второй строки, умноженной на отношение второго коэффициента третьей и второй строки. В нашем случае формула будет иметь следующий вид:
=B13:E13-$B$12:$E$12*(C13/$C$12)После ввода формулы выделяем весь ряд и применяем сочетание клавиш Ctrl+Shift+Enter.
- Теперь следует выполнить обратную прогонку по методу Гаусса. Пропускаем три строки от последней записи. В четвертой строке вводим формулу массива:
=B17:E17/D17Таким образом, мы делим последнюю рассчитанную нами строку на её же третий коэффициент. После того, как набрали формулу, выделяем всю строчку и жмем сочетание клавиш Ctrl+Shift+Enter.
- Поднимаемся на строку вверх и вводим в неё следующую формулу массива:
=(B16:E16-B21:E21*D16)/C16Жмем привычное уже нам сочетание клавиш для применения формулы массива.
- Поднимаемся ещё на одну строку выше. В неё вводим формулу массива следующего вида:
=(B15:E15-B20:E20*C15-B21:E21*D15)/B15Опять выделяем всю строку и применяем сочетание клавиш Ctrl+Shift+Enter.
- Теперь смотрим на числа, которые получились в последнем столбце последнего блока строк, рассчитанного нами ранее. Именно эти числа (4, 7 и 5) будут являться корнями данной системы уравнений. Проверить это можно, подставив их вместо значений X1, X2 и X3 в выражения.
Как видим, в Экселе систему уравнений можно решить целым рядом способов, каждый из которых имеет собственные преимущества и недостатки. Но все эти методы можно условно разделить на две большие группы: матричные и с применением инструмента подбора параметров. В некоторых случаях не всегда матричные методы подходят для решения задачи. В частности тогда, когда определитель матрицы равен нулю. В остальных же случаях пользователь сам волен решать, какой вариант он считает более удобным для себя.
Еще статьи по данной теме:
Помогла ли Вам статья?
Возможно вы слышали о нобелевском лауреате, психологе и исследователе по имени Дэниель Канеман. Канеман занимался наукой, которую называют термином «поведенческая экономика», т.е. изучал реакции, поведение и суждения людей в типовых жизненных (и экономических) ситуациях и условиях неопределенности.
В его книге, которая называется «Думай медленно — решай быстро» (очень рекомендую, кстати) в качестве одного из примеров когнитивных искажений — несознательной автоматической реакции — приводится следующая задача:
Бейсбольная бита и мяч стоят вместе 1 доллар 10 центов.
Бита дороже мяча на 1 доллар.
Сколько стоит мяч?
Подозреваю, что вашей первой рефлекторной мыслью, скорее всего, будет «10 центов!» 

Конечно можно «тряхнуть стариной» и решить всё вручную на бумажке через подстановку переменных — как-то так:

Но, во-первых, на практике уравнения могут быть сложнее и переменных может оказаться сильно больше двух и, во-вторых, у нас с вами есть Microsoft Excel — универсальный мега-инструмент, величайшее изобретение человечества. Так что давайте-ка лучше разберём как решить нашу задачу с его помощью.
Способ 1. Матричные функции МУМНОЖ и МОБР
Само собой, изобретать велосипед тут не надо — прогрессивное человечество в лице математиков давным-давно придумало кучу способов для решения подобных задач. В частности, если уравнения в нашей системе линейные (т.е. не используют степени, логарифмы, тригонометрические функции типа sin, cos и т.д.), то можно использовать метод Крамера.
Сначала записываем числовые коэффициенты, стоящие перед нашими переменными в виде матрицы (в нашем случае — размером 2х2, в общем случае — может быть и больше).
Затем находим для неё так называемую обратную матрицу , т.е. матрицу, при умножении которой на исходную матрицу коэффициентов получается единица. В Excel это легко сделать с помощью стандартной математической функции МОБР (MINVERSE):

Здесь важно отметить, что если у вас свежая версия Excel 2021 или Excel 365, то достаточно ввести эту функцию обычным образом в первую ячейку (G7) — сразу получится динамический массив с обратной матрицей 2х2. Если же у вас более старая версия Excel, то эту функцию нужно обязательно вводить как формулу массива, а именно:
- Выделить диапазон для результатов — G7:H8
- Ввести функцию =МОБР(B7:C8) в строку формул
- Нажать на клавиатуре сочетание клавиш Ctrl+Shift+Enter
Замечательное свойство обратной матрицы состоит в том, что если умножить её на значения правых частей наших уравнений (свободные члены), то мы получим значения переменных, при которых левые и правые части уравнений будут равны, т.е. решения нашей задачи. Выполнить такое матричное умножение можно с помощью ещё одной стандартной экселевской функции МУМНОЖ (MMULT):

Если у вас старая версия Excel, то не забудьте также ввести её в режиме формулы массива, т.е. сначала выделить диапазон K7:K8, а после ввода функции нажать сочетание клавиш Ctrl+Shift+Enter.
Само собой, уравнений и переменных может быть больше, да и посчитать всё можно сразу в одной формуле, вложив используемые функции одна в другую:

Не так уж и сложно, правда? Однако надо понимать, что этот метод подходит только для решения систем линейных уравнений. Если у вас в уравнениях используются функции посложнее четырех базовых математических действий, то зачастую проще будет пойти другим путем — через подбор.
Способ 2. Подбор надстройкой «Поиск решения» (Solver)
Принципиально другой способ решения подобных задач — это итерационные методы, т.е. последовательный подбор значений переменных, чтобы после подстановки их в наши уравнения мы получили верные равенства. Само собой, подбор имеется ввиду не тупой и долгий (брутфорс), а умный и быстрый, благо математики, опять же, давным-давно придумали кучу различных методов для решения таких задач буквально за несколько итераций.
В Microsoft Excel некоторые из этих методов реализованы в стандартной надстройке Поиск решения (Solver). Её можно подключить через Файл — Параметры — Надстройки — Перейти (File — Options — Add-ins — Go to) или на вкладке Разработчик — Надстройки (Developer — Add-ins).
Давайте рассмотрим её использование на следующей задаче. Предположим, что нам с вами нужно решить вот такую систему из двух нелинейных уравнений:

Подготавливаем основу для оптимизации в Excel:

Здесь:
- В жёлтых ячейках C9:C10 лежат текущие значения наших переменных, которые и будут подбираться в процессе оптимизации. В качестве стартовых можно взять любые значения, например, нули или единицы — роли не играет. Для удобства, кстати, этим ячейкам можно дать имена, назвав их именами переменных x и y, — для этого выделите диапазон C9:C10 и выберите команду Формулы — Создать из выделенного — Слева (Formulas — Create from selection — Left column).
- В зелёных ячейках E9:E10 введены наши уравнения с использованием либо прямых ссылок на жёлтые ячейки переменных, либо созданных имён (так нагляднее). В результате мы видим, чему равны наши уравнения при текущих значениях переменных.
- В синих ячейках F9:F10 введены значения правых частей наших уравнений, к которым мы должны стремиться.
Теперь запускаем нашу надстройку на вкладке Данные — Поиск решения (Data — Solver) и вводим в появившемся диалоговом окне следующие параметры:

- Оптимизировать целевую функцию (Set target cell) — любая из двух наших зелёных ячеек с уравнениями, например E9.
- Изменяя ячейки переменных (By changing cells) — жёлтые ячейки с текущими значениями переменных, которыми мы «играем».
- Добавляем ограничение с помощью кнопки Добавить (Add) и задаём равенство левой и правой части наших уравнений, т.е. зелёного и голубого диапазонов.
- В качестве метода решения выбираем Поиск решения нелинейных задач методом ОПГ, т.к. уравнения у нас нелинейные. Для линейных можно смело выбирать симплекс-метод.
После нажатия на кнопку Найти решение (Solve) через пару мгновений (или не пару — это зависит от сложности задачи) мы должны увидеть окно с результатами. Если решение найдено, то в жёлтых ячейках отобразятся подобранные значения наших переменных:
Обратите внимание, что поскольку мы здесь используем итерационные, а не аналитические методы, то зеленые ячейки не совсем равны голубым, т.е. найденное решение не абсолютно точно. На практике, конечно же, такой точности вполне достаточно для большинства задач, и если необходимо, её можно настроить, вернувшись в окно Поиск решения и нажав кнопку Параметры (Options).
Решение СЛАУ в MS EXCEL
С системой линейных алгебраических уравнений (СЛАУ) часто приходится сталкиваться не только в курсе математики. Их решение пригодится в других науках, например, физике или химии.
Систему из двух уравнений часто можно решить способом подстановки. Системы трех и более уравнений приходится решать другими способами. К ним относятся:
- метод обратной матрицы;
- метод Крамера;
- метод Гаусса.
В общем виде систему линейных уравнений можно представить в виде:
A⋅X=BAcdot X = B,где AA – матрица коэффициентов;
XX – вектор-столбец неизвестных;
BB – вектор-столбец свободных коэффициентов.
Мы рассмотрим решение одной и той же простой системы уравнений первыми двумя способами, чтобы сравнить результаты. Если при решении разными способами ответы будут совпадать, значит СЛАУ решена верно.
Метод обратной матрицы
Метод обратной матрицы (матричный метод) используется для квадратных матрицы, чей определитель равен нулю.
Для того чтобы найти корни уравнения этим способом, в первую очередь находят обратную матрицу, которую перемножают на свободные коэффициенты. Рассмотрим, как это будет выглядеть в MS Excel.
Возьмем для примера матрицу (рис.1):
Рисунок 1
Запишем нашу систему уравнений в следующем виде (рис.2):
Рисунок 2
Скопируем матрицу коэффициентов и таблицу свободных коэффициентов в Excel (рис.3):
Рисунок 3
Для нахождения обратной матрицы выделяем нужные ячейки, в которых будет новая матрица, в строке формул пишем функцию «=мобр» и указываем в скобках массив матрицы, для которой мы и находим обратную матрицу. В нашем случае это будет «=мобр(C2:E4)». После этого нажимаем комбинацию клавиш Ctrl+Shift+Enter (рис.4):
Рисунок 4
После этого в каждой ячейке формула будет записана в фигурных скобках.
Для нахождения неизвестных необходимо перемножить обратную матрицу и свободные коэффициенты. Делается это так же, как и нахождение обратной матрицы: выделяем ячейки, куда будут записаны ответы, в строке формул записываем функцию «=мумнож», в скобках указываем массив матрицы и вектор свободных коэффициентов. В нашем случае это будет выглядеть «=мумнож(C7:E9;F2:F4)»:
Рисунок 5
Для тренировки можно скачать файл с данным примером и подставить другие значения. Таким же способом решают СЛАУ из 4, 5 и более уравнений.
Если тема осталась для вас непонятной, изучайте подробно матрицы и методы работы с ними в этой статье с пошаговым разбором.
Метод Крамера
Метод Крамера несколько отличается от предыдущего. Для этого нам нужно найти определитель основной матрицы, после чего в матрице коэффициентов каждый столбец заменить на вектор свободных коэффициентов и для полученных таблиц найти определитель. Рассмотрим наглядно это на рисунке 6:
Рисунок 6
Для каждой матрицы находим определитель с помощью функции «МОПРЕД». Корнями системы уравнений будут частные определителя основной и новых матриц (рис.7):
Рисунок 7
Такими простыми способами можно решать системы линейных квадратных уравнений.
Тест по теме «Решение СЛАУ в MS Excel»
Решим Систему Линейных Алгебраических Уравнений (СЛАУ) методом обратной матрицы в MS EXCEL. В этой статье нет теории, объяснено только как выполнить расчеты, используя MS EXCEL.
Решим систему из 3-х линейных алгебраических уравнений с помощью
обратной матрицы
(матричным методом).
СОВЕТ
: Решение СЛАУ методом Крамера приведено в статье
Решение Системы Линейных Алгебраических Уравнений (СЛАУ) методом Крамера в MS EXCEL
.
Запишем в ячейки основную матрицу системы и столбец свободных членов.
Систему
n
линейных алгебраических уравнений с
n
неизвестными можно решать матричным методом только тогда, когда
определитель основной матрицы
системы отличен от нуля (в противном случае мы имеем линейно зависимые уравнения и соответственно решение систем не единственное). В нашем случае определитель =12.
Вычислим
обратную матрицу
с помощью
формулы массива
МОБР()
.
Для этого выделите ячейки
A18:C20
, а в
Строке формул
введите
=МОБР(A11:C13)
, затем нажмите
CTRL+SHIFT+ENTER
.
Решение системы уравнений получим умножением обратной матрицы и столбца свободных членов.
Перемножить матрицы
можно с помощью
формулы массива
=МУМНОЖ()
.
Для этого выделите ячейки
F18:F20
, а в
Строке формул
введите
=МУМНОЖ(A18:C20;F11:F13)
, затем нажмите
CTRL+SHIFT+ENTER
.
В
файле примера
также приведено решение системы 4-х и 5-и уравнений.
Рассмотрим
использование метода «Поиск решения…»
на исходных данных представленных на
рис. 4.1.
Для использования
метода «Поиск решения…» необходимо
свести задачу решения СЛАУ к задаче
оптимизации. Введем целевую функцию
вида
, (4.4)
где bi
– i-й
элемент вектора свободных членов СЛАУ;
ai,j
– i,
j-й
элемент матрицы коэффициентов СЛАУ;
xj
– j-й
элемент вектора решения СЛАУ;
n
– количество уравнений в СЛАУ.
Ограничений на
вектор решения X
накладывать не будем.
Тогда математически
задачу поиска вектора решения СЛАУ X
можно записать
. (4.5)
Подобная задача
(4.5) легко решается использованием метода
«Поиск решения…» MS
Excel
(см. рис. 4.2) следующим образом:
-
обнуляем ячейки
(B29:B32),
в которых будем формировать вектор
решения СЛАУ X; -
для ячейки G30
в строке формул
запишем=(B15-МУМНОЖ(B10:E10;B29:B32))^2+(B16-МУМНОЖ(B11:E11;B29:B32))^2+(B17-МУМНОЖ(B12:E12;B29:B32))^2+(B18-МУМНОЖ(B13:E13;B29:B32))^2
(см. 4.5)правую
часть целевой функции (4.4) для исходных
данных нашей задачи;

Рис. 4.2. Решение
СЛАУ, используя метод «Поиск
решения…»
(пункт главного меню
«Сервис») MS
Excel
-
в пункте главного
меню MS
Excel
«Сервис»
выбираем подпункт «Поиск решения…»
(см. рис. 4.3).
При открытии окна
«Поиск решения» напротив метки
«Установить целевую ячейку:» будет
отражен адрес активной ячейки (ячейки,
в которой был установлен курсор при
открытии окна). В ячейке $G$30
(G30)
должна быть записана формула вычисления
правой части целевой функции (4.4). Также
в окне «Поиск решения» ниже метки
«Изменяя ячейки:» необходимо задать
адрес вектора решения СЛАУ X
($B$29:$B$32)
(B29:B32).
Адреса целевой ячейки и вектора решения
СЛАУ можно формировать в режиме
конструктора. Для этого необходимо
поместить курсор в ячейку формирования
соответствующего адреса и на листе MS
Excel
выделить ячейку или массив ячеек;
-
нажать кнопку
«Выполнить». После чего появится
окно «Результаты поиска решения»
и в ячейках (B29:B32)
сформируется вектор решения СЛАУ X.

Рис. 4.3. Окно “Поиск
решения…”
Лист MS
Excel,
представленный на рис. 4.2 позволяет
получить вектор решения для любой СЛАУ,
состоящей из четырех уравнений. Описанная
технология решения СЛАУ легко позволяет
решить задачу любой размерности (для
любого количества уравнений в СЛАУ).
4.3. Решение слау методом Крамера (методом определителей)
СЛАУ из n
уравнений задается матрицей коэффициентов
СЛАУ A
и вектором свободных членов СЛАУ B.
;
,
где ai,j
– i,
j-й
элемент матрицы коэффициентов СЛАУ;
bi
– i-й
элемент вектора свободных членов СЛАУ.
Суть метода Крамера
в следующем: сначала вычисляется
определитель матрицы коэффициентов
СЛАУ
,
за тем вычисляются
еще n
определителей
,
,…,
,
т.е. определитель
вычисляется для матрицы, полученной из
матрицы коэффициентов СЛАУ путем замены
j-го
столбца матрицы коэффициентов СЛАУ
вектором свободных членов СЛАУ.
Тогда элементы
вектора решения СЛАУ xj,
j
= 1, …, n
определяются по формуле
.
В MS
Excel
существует формула
=МОПРЕД(левый_верхний_элемент_исходной_матрицы:
правый_нижний_элемент_исходной_матрицы)
для вычисления значений определителей
квадратных матриц.
Решение СЛАУ
методом Крамера (методом определителей)
представлено на рис. 4.4.

Рис. 4.4. Решение
СЛАУ методом Крамера
Строки с 1 по 25 на
рис. 4.4 не показаны, потому что они
полностью совпадают с соответствующими
строками рис. 4.1, 4.2.
Необходимо
сформировать матрицы для вычисления
определителей ,
X1,
X2,
X3
в ячейках (B27:E30),
(B32:E35),
(B37:E40),
(B42:E45),
(B47:E50),
соответственно. Алгоритм формирования
матриц для вычисления определителей
представлен в табл. 4.2.
Табл. № 4.2
Алгоритм формирования
матриц для вычисления определителей
|
№ п/п |
Щелкнуть левой |
Набрать в строке |
|
Формирование |
||
|
|
B27 |
=B10 |
|
|
B28 |
=B11 |
|
|
B29 |
=B12 |
|
|
B30 |
=B13 |
|
|
С27 |
=C10 |
|
|
С28 |
=C11 |
|
|
С29 |
=C12 |
|
|
С30 |
=C13 |
|
|
D27 |
=D10 |
|
|
D28 |
=D11 |
|
|
D29 |
=D12 |
|
|
D30 |
=D13 |
|
|
E27 |
=E10 |
|
|
E28 |
=E11 |
|
|
E29 |
=E12 |
|
|
E30 |
=E13 |
|
Формирование |
||
|
|
B32 |
=B15 |
|
|
B33 |
=B16 |
|
|
B34 |
=B17 |
|
|
B35 |
=B18 |
|
|
C32 |
=C10 |
|
|
C33 |
=C11 |
|
|
C34 |
=C12 |
|
|
C35 |
=C13 |
|
|
D32 |
=D10 |
|
|
D33 |
=D11 |
|
|
D34 |
=D12 |
|
|
D35 |
=D13 |
|
|
E32 |
=E10 |
|
|
E33 |
=E11 |
|
|
E34 |
=E12 |
|
|
E35 |
=E13 |
|
Формирование |
||
|
|
B37 |
=B10 |
|
|
B38 |
=B11 |
|
|
B39 |
=B12 |
|
|
B40 |
=B13 |
|
|
C37 |
=B15 |
|
|
C38 |
=B16 |
|
|
C39 |
=B17 |
|
|
C40 |
=B18 |
|
|
D37 |
=D10 |
|
|
D38 |
=D11 |
|
|
D39 |
=D12 |
|
|
D40 |
=D13 |
|
|
E37 |
=E10 |
|
|
E38 |
=E11 |
|
|
E39 |
=E12 |
|
|
E40 |
=E13 |
|
Формирование |
||
|
|
B42 |
=B10 |
|
|
B43 |
=B11 |
|
|
B44 |
=B12 |
|
|
B45 |
=B13 |
|
|
C42 |
=C10 |
|
|
C43 |
=C11 |
|
|
C44 |
=C12 |
|
|
C45 |
=C13 |
|
|
D42 |
=B15 |
|
|
D43 |
=B16 |
|
|
D44 |
=B17 |
|
|
D45 |
=B18 |
|
|
E42 |
=E10 |
|
|
E43 |
=E11 |
|
|
E44 |
=E12 |
|
|
E45 |
=E13 |
|
Формирование |
||
|
|
B47 |
=B10 |
|
|
B48 |
=B11 |
|
|
B49 |
=B12 |
|
|
B50 |
=B13 |
|
|
C47 |
=C10 |
|
|
C48 |
=C11 |
|
|
C49 |
=C12 |
|
|
C50 |
=C13 |
|
|
D47 |
=D10 |
|
|
D48 |
=D11 |
|
|
D49 |
=D12 |
|
|
D50 |
=D13 |
|
|
E47 |
=B15 |
|
|
E48 |
=B16 |
|
|
E49 |
=B17 |
|
|
E50 |
=B18 |
Алгоритм вычисления
определителей представлен в табл. 4.3.
Табл. № 4.3
Алгоритм вычисления
определителей
|
№ п/п |
Щелкнуть левой |
Набрать в строке |
|
|
G28 |
=МОПРЕД(B27:E30) |
|
|
G33 |
=МОПРЕД(B32:E35) |
|
|
G38 |
=МОПРЕД(B37:E40) |
|
|
G43 |
=МОПРЕД(B42:E45) |
|
|
G48 |
=МОПРЕД(B47:E50) |
Возможно вычисление
определителей в режиме конструктора.
Для этого необходимо выделить ячейку,
в которой вычисляется определитель,
например, G28
и щелкнуть по пиктограмме MS
Excel
,
за тем в группе “Математические”
выбрать функцию МОПРЕД и нажать кнопку
“OK”.
После появления окна “Аргументы функции”
выделить (при нажатой левой кнопки
манипулятора мышь) элементы исходной
матрицы, например, ячейки (B27:E30)
и нажать кнопку “OK”.
Вектор решения
СЛАУ X
определяется в строке 53. Алгоритм
формирования вектора решения представлен
в табл. 4.4.
Табл. № 4.4
Алгоритм формирования
вектора решения СЛАУ X
|
№ п/п |
Щелкнуть левой |
Набрать в строке |
|
|
C53 |
=G33/G28 |
|
|
G53 |
=G38/G28 |
|
|
J53 |
=G43/G28 |
|
|
M53 |
=G48/G28 |
В результате в
ячейках (C53,
G53,
J53,
M53)
сформируется вектор решения СЛАУ X
(см. рис. 4.4).
Лист MS
Excel,
представленный на рис. 4.4 позволяет
получить вектор решения для любой СЛАУ,
состоящей из четырех уравнений. Описанная
технология решения СЛАУ легко позволяет
решить задачу любой размерности (для
любого количества уравнений в СЛАУ).
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #

















































