Как решить уравнение методом гаусса в excel

В программе Excel имеется обширный инструментарий для решения различных видов уравнений разными методами.

Рассмотрим на примерах некоторые варианты решений.

Решение уравнений методом подбора параметров Excel

Инструмент «Подбор параметра» применяется в ситуации, когда известен результат, но неизвестны аргументы. Excel подбирает значения до тех пор, пока вычисление не даст нужный итог.

Путь к команде: «Данные» — «Работа с данными» — «Анализ «что-если»» — «Подбор параметра».

Подбор параметра.

Рассмотрим на примере решение квадратного уравнения х2 + 3х + 2 = 0. Порядок нахождения корня средствами Excel:

  1. Введем в ячейку В2 формулу для нахождения значения функции. В качестве аргумента применим ссылку на ячейку В1.
  2. Формула.

  3. Открываем меню инструмента «Подбор параметра». В графе «Установить в ячейку» — ссылка на ячейку В2, где находится формула. В поле «Значение» вводим 0. Это то значение, которое нужно получить. В графе «Изменяя значение ячейки» — В1. Здесь должен отобразиться отобранный параметр.
  4. Параметры.

  5. После нажатия ОК отобразится результат подбора. Если нужно его сохранить, вновь нажимаем ОК. В противном случае – «Отмена».

Пример.
Параметры вычислений.

Для подбора параметра программа использует циклический процесс. Чтобы изменить число итераций и погрешность, нужно зайти в параметры Excel. На вкладке «Формулы» установить предельное количество итераций, относительную погрешность. Поставить галочку «включить итеративные вычисления».



Как решить систему уравнений матричным методом в Excel

Дана система уравнений:

Система уравнений.

  1. Значения элементов введем в ячейки Excel в виде таблицы.
  2. Таблица.

  3. Найдем обратную матрицу. Выделим диапазон, куда впоследствии будут помещены элементы матрицы (ориентируемся на количество строк и столбцов в исходной матрице). Открываем список функций (fx). В категории «Математические» находим МОБР. Аргумент – массив ячеек с элементами исходной матрицы.
  4. Аргументы функции.

  5. Нажимаем ОК – в левом верхнем углу диапазона появляется значение. Последовательно жмем кнопку F2 и сочетание клавиш Ctrl + Shift + Enter.
  6. Диапазон.

  7. Умножим обратную матрицу Ах-1х на матрицу В (именно в таком порядке следования множителей!). Выделяем диапазон, где впоследствии появятся элементы результирующей матрицы (ориентируемся на число строк и столбцов матрицы В). Открываем диалоговое окно математической функции МУМНОЖ. Первый диапазон – обратная матрица. Второй – матрица В.
  8. Аргументы1.

  9. Закрываем окно с аргументами функции нажатием кнопки ОК. Последовательно нажимаем кнопку F2 и комбинацию Ctrl + Shift + Enter.

Корни уравнений.

Получены корни уравнений.

Решение системы уравнений методом Крамера в Excel

Возьмем систему уравнений из предыдущего примера:

Система уравнений.

Для их решения методом Крамера вычислим определители матриц, полученных заменой одного столбца в матрице А на столбец-матрицу В.

Матрицы.

Для расчета определителей используем функцию МОПРЕД. Аргумент – диапазон с соответствующей матрицей.

МОПРЕД.

Рассчитаем также определитель матрицы А (массив – диапазон матрицы А).

МОПРЕД1.

Определитель системы больше 0 – решение можно найти по формуле Крамера (Dx / |A|).

Для расчета Х1: =U2/$U$1, где U2 – D1. Для расчета Х2: =U3/$U$1. И т.д. Получим корни уравнений:

Корни уравнений1.

Решение систем уравнений методом Гаусса в Excel

Для примера возьмем простейшую систему уравнений:

3а + 2в – 5с = -1
2а – в – 3с = 13
а + 2в – с = 9

Коэффициенты запишем в матрицу А. Свободные члены – в матрицу В.

Матрица А.

Для наглядности свободные члены выделим заливкой. Если в первой ячейке матрицы А оказался 0, нужно поменять местами строки, чтобы здесь оказалось отличное от 0 значение.

  1. Приведем все коэффициенты при а к 0. Кроме первого уравнения. Скопируем значения в первой строке двух матриц в ячейки В6:Е6. В ячейку В7 введем формулу: =B3:Е3-$B$2:$Е$2*(B3/$B$2). Выделим диапазон В7:Е7. Нажмем F2 и сочетание клавиш Ctrl + Shift + Enter. Мы отняли от второй строки первую, умноженную на отношение первых элементов второго и первого уравнения.
  2. Матрица А.

  3. Копируем введенную формулу на 8 и 9 строки. Так мы избавились от коэффициентов перед а. Сохранили только первое уравнение.
  4. Копирование формулы.

  5. Приведем к 0 коэффициенты перед в в третьем и четвертом уравнении. Копируем строки 6 и 7 (только значения). Переносим их ниже, в строки 10 и 11. Эти данные должны остаться неизменными. В ячейку В12 вводим формулу массива.
  6. Формула в массиве.

  7. Прямую прогонку по методу Гаусса сделали. В обратном порядке начнем прогонять с последней строки полученной матрицы. Все элементы данной строки нужно разделить на коэффициент при с. Введем в строку формулу массива: {=B12:E12/D12}.
  8. Деление на коэффициент.

  9. В строке 15: отнимем от второй строки третью, умноженную на коэффициент при с второй строки ({=(B11:E11-B16:E16*D11)/C11}). В строке 14: от первой строки отнимаем вторую и третью, умноженные на соответствующие коэффициенты ({=(B10:E10-B15:E15*C10-B16:E16*D10)/B10}). В последнем столбце новой матрицы получаем корни уравнения.

Пример1.

Примеры решения уравнений методом итераций в Excel

Вычисления в книге должны быть настроены следующим образом:

Параметры вычислений.

Делается это на вкладке «Формулы» в «Параметрах Excel». Найдем корень уравнения х – х3 + 1 = 0 (а = 1, b = 2) методом итерации с применением циклических ссылок. Формула:

Хn+1 = Xn– F (Xn) / M, n = 0, 1, 2, … .

M – максимальное значение производной по модулю. Чтобы найти М, произведем вычисления:

f’ (1) = -2 * f’ (2) = -11.

Полученное значение меньше 0. Поэтому функция будет с противоположным знаком: f (х) = -х + х3 – 1. М = 11.

В ячейку А3 введем значение: а = 1. Точность – три знака после запятой. Для расчета текущего значения х в соседнюю ячейку (В3) введем формулу: =ЕСЛИ(B3=0;A3;B3-(-B3+СТЕПЕНЬ(B3;3)-1/11)).

ЕСЛИ.

В ячейке С3 проконтролируем значение f (x): с помощью формулы =B3-СТЕПЕНЬ(B3;3)+1.

Корень уравнения – 1,179. Введем в ячейку А3 значение 2. Получим тот же результат:

Скачать решения уравнений в Excel

Пример2.

Корень на заданном промежутке один.

Урок 15. Решение СЛУ методом Крамера и методом Гаусса.

Метод Крамера

   (СЛУ)
  — определитель системы
Если определитель СЛУ отличен от нуля, тогда решение системы определяется однозначно по формулам Крамера:
,    ,      ()
где:  

Для этого в столбец, где стоит переменная х, а значит в первый столбец, вместо коэффициентов при х, ставим свободные коэффициенты, которые в системе уравнений стоят в правых частях уравнений
  Для этого в столбец, где стоит переменная y (2 столбец), вместо коэффициентов при y, ставим свободные коэффициенты, которые в системе уравнений стоят в правых частях уравнений
Для этого в столбец, где стоит переменная z, а значит втретий столбец, вместо коэффициентов при z, ставим свободные коэффициенты, которые в системе уравнений стоят в правых частях уравнений

Задание 1.  Решить СЛУ с помощью формул Крамера в Excel

Ход решения

1. Запишем уравнение в матричном виде:

  

2. Введите матрицу А и В в Excel.

3. Найдите определитель матрицы А. Он должен получится равным 30.

4. Определитель системы отличен от нуля, следовательно — решение однозначно определяется по формулам Крамера.

5. Заполните значения dX, dY, dZ на листе Excel (см.рис.ниже).  

6. Для вычисления значений dX, dY, dZ в ячейки F8, F12, F16 необходимо ввести функцию, вычисляющую определитель dX, dY, dZ соответственно.

7. Для вычисления значения X в ячейку I8 необходимо ввести формулу =F8/B5 (по формуле Крамера dX/|A|).

8. Самостоятельно введите формулы для вычисления Y и Z.

Задание 2: самостоятельно найти решение СЛУ методом Крамера:

Формулы Крамера и матричный метод решения систем линейных уравнений не имеют серьезного практического применения, так как связаны с громоздкими выкладками. Практически для решения систем линейных уравнений чаще всего применяется метод Гаусса.

Метод Гаусса

Процесс решения по методу Гаусса состоит из двух этапов.

1. Прямой ход: система приводится к ступенчатому (в частности, треугольному) виду.

Для того чтобы решить систему уравнений выписывают расширенную матрицу этой системы

и над строками этой матрицы производят элементарные преобразования, приводя ее к виду, когда ниже главной диагонали будут располагаться нули.
Разрешается выполнять элементарные преобразования над матрицами.
С помощью этих преобразований каждый раз получается расширенная матрица новой системы, равносильной исходной, т.е. такой системы, решение которой совпадает с решением исходной системы.

2. Обратный ход: идет последовательное определение неизвестных из этой ступенчатой системы.

Пример. Установить совместность и решить систему

Решение.
Прямой ход: Выпишем расширенную матрицу системы и поменяем местами первую и вторую строки для того, чтобы элемент  равнялся единице (так удобнее производить преобразования матрицы).

.

Имеем  Ранги матрицы системы и ее расширенной матрицы совпали с числом неизвестных. Согласно теореме Кронекера-Капелли система уравнений совместна и решение ее единственно.
Обратный ход: Выпишем систему уравнений, расширенную матрицу которой мы получили в результате преобразований:

Итак, имеем
Далее, подставляя  в третье уравнение, найдем
Подставляя  и во второе уравнение, получим .
Подставляя в первое уравнение найденные  получим .
Таким образом, имеем решение системы  .

Решение СЛУ методом Гаусса в Excel:

В тексте будет предлагаться ввести в диапазон ячеек формулу вида: {=A1:B3+$C$2:$C$3} и т.п., это так-называемые «формулы массива». Microsoft Excel автоматически заключает ее в фигурные скобки ( { } ). Для введения такого типа формул необходимо выделить весь диапазон, куда нужно вставить формулу, в первой ячейке ввести формулу без фигурных скобок (для примера выше – =A1:B3+$C$2:$C$3) и нажать Ctrl+Shift+Enter.
Пускай имеем систему линейных уравнений:
Система линейных уравнений

1.
Запишем коэффициенты системы уравнений в ячейки A1:D4 а столбец свободных членов в ячейки E1:E4. Если в ячейке A1 находится 0, необходимо поменять строки местами так, чтоб в этой ячейке было отличное от ноля значение. Для большей наглядности можно добавить заливку ячеек, в которых находятся свободные члены.
Метод Гаусса (Excel): Шаг первый

2. Необходимо коэффициент при x1 во всех уравнениях кроме первого привести к 0. Для начала сделаем это для второго уравнения. Скопируем первую строку в ячейки A6:E6 без изменений, в ячейки A7:E7 необходимо ввести формулу: {=A2:E2-$A$1:$E$1*(A2/$A$1)}. Таким образом мы от второй строки отнимаем первую, умноженную на A2/$A$1, т.е. отношение первых коэффициентов второго и первого уравнения. Для удобства заполнения строк 8 и 9 ссылки на ячейки первой строки необходимо использовать абсолютные (используем символ $).

Метод Гаусса (Excel): Шаг второй

3. Копируем введенную формулу формулу в строки 8 и 9, таким образом избавляемся от коэффициентов перед x1 во всех уравнениях кроме первого.

Метод Гаусса (Excel): Шаг третий

4. Теперь приведем коэффициенты перед x2 в третьем и четвертом уравнении к 0. Для этого скопируем полученные 6-ю и 7-ю строки (только значения) в строки 11 и 12, а в ячейки A13:E13 введем формулу {=A8:E8-$A$7:$E$7*(B8/$B$7)}, которую затем скопируем в ячейки A14:E14. Таким образом реализуется разность строк 8 и 7, умноженных на коэффициент B8/$B$7. Не забываем проводить перестановку строк, чтоб избавиться от 0 в знаменателе дроби.

Метод Гаусса (Excel): Шаг четвертый

5. Осталось привести коэффициент при x3 в четвертом уравнении к 0, для этого вновь проделаем аналогичные действия: скопируем полученные 11, 12 и 13-ю строки (только значения) в строки 16-18, а в ячейки A19:E19 введем формулу {=A14:E14-$A$13:$E$13*(C14/$C$13)}. Таким образом реализуется разность строк 14 и 13, умноженных на коэффициент C14/$C$13. Не забываем проводить перестановку строк, чтоб избавиться от 0 в знаменателе дроби.

Метод Гаусса (Excel): Шаг пятый

6. Прямая прогонка методом Гаусса завершена. Обратную прогонку начнем с последней строки полученной матрицы. Необходимо все элементы последней строки разделить на коэффициент при x4. Для этого в строку 24 введем формулу {=A19:E19/D19}.

Метод Гаусса (Excel): Шаг шестой

7. Приведем все строки к подобному виду, для этого заполним строки 23, 22, 21 следующими формулами:

23: {=(A18:E18-A24:E24*D18)/C18} – отнимаем от третьей строки четвертую умноженную на коэффициент при x4 третьей строки.

22: {=(A17:E17-A23:E23*C17-A24:E24*D17)/B17} – от второй строки отнимаем третью и четвертую, умноженные на соответствующие коэффициенты.

21: {=(A16:E16-A22:E22*B16-A23:E23*C16-A24:E24*D16)/A16} – от первой строки отнимаем вторую, третью и четвертую, умноженные на соответствующие коэффициенты.

Результат (корни уравнения) вычислены в ячейках E21:E24.
Метод Гаусса (Excel): Шаг седьмой

Составитель: Салий Н.А.

Яндекс.Метрика

Многие задачи математики и статистики приходится решать электронно. В этом уроке мы подробно разберем, как без сложностей решить систему уравнений в Excel. Используя предложенные методики, вы сможете быстро и правильно справится даже с самыми сложными уравнениями.

Метод Гаусса для простых уравнений

Для простых уравнений, где три или меньше неизвестных, можно воспользоваться методом Гаусса. Вы можете решить одно уравнение или несколько одновременно. Будем решать по следующим данным:
2x+3y=12
3x−y=7.

  1. Вставим наши уравнения в ячейки (желательно их оформить у самого края электронной книги).

№ 1.png

  1. Чуть ниже на этой странице делаем две небольшие таблицы, куда будут вноситься коэффициенты и свободные члены. Для этого оформим несколько ячеек со значением А (для коэффициентов) и несколько с шапкой В (для свободных членов)

№ 2.png

Важно!

Будьте внимательны при внесении записей, все значения, которые расположены после знака равно, записываются в табличку В.

  1. Теперь занимаемся первым уравнением. Для этого скопируем первую матрицу вместе со значением после знака равно. Размещаем ее ниже наших табличек на одну строчку.

№ 3.png

  1. Далее в ячейку ниже вводим подготовленную формулу: =B8:E8-$B7:7:E7∗(B8/7*(B8/B$7). Затем нажимаете комбинацию клавиш CTRL+SHIFT+ENTER. Во всей строке проставятся точные значения.

№ 4.png

  1. Далее вам нужно скопировать эту строку и продублировать ее на ячейку ниже. Теперь скопируем две первые строчки после пустующей строки. Для этого выделим их и нажмем комбинацию CTRL+C или при помощи встроенного инструмента «Копировать» на панели управления.

№ 5.png

  1. Отступаем одну строчку и на следующей делаем выделение пустой ячейки курсором мыши. Затем вызываем выпадающий список путем нажатия на правую кнопку мыши. Теперь выбираем пункт «Специальная вставка», появится дополнительный список, в котором необходимо отметить «Вставить значения».

№ 6.png

  1. Как видим, в нашем случае высвечивается ошибка о запрете деления на «0». В вашем случае, это будут другие значения.

№ 7.png

  1. В дальнейшем вам необходимо сделать обратную прогонку. Для этого отступим три пустые строки на странице, а в четвертую вставим формулу: =B17:E17/D17. Затем выделяем строчку и жмем все ту же комбинацию клавиш CTRL+SHIFT+ENTER.

№ 8.png

В результате, при проведении правильных расчетов вы должны получить ответы на буквенные символы. Однако, этот метод требует внимательности и точного ввода формул, с чем не каждый пользователь справляется, поэтому рассмотрим другой вариант для решения.

Полезно знать!

Аналогичным способом проводим вычисление неизвестных аргументов для второго и третьего уравнений, если они присутствуют, и представляют собой целую систему.

Решение квадратного уравнения с подбором параметров

Предположим, есть буквенное выражение 5×2 + 3x + 7 = 0. Чтобы его решить вручную, придется тратить время на каждое действие. При помощи Excel, а именно подбора параметров, сделать это можно в считанные минуты.

  1. Открываем новый лист Excel и вносим уравнение в первую ячейку. Отступим одну строку вниз и пропишем значение для Х=0. Далее будем высчитывать его через строку формул F(х), обязательно прописываем выражение в отдельной ячейке.

№ 9.png

  1. После этого заносим следующую формулу после знака равно в строке формул. Обязательно учитывайте, что ваши значения будут другими. Делайте на примере нашего выражения. Итак, вставляем =5x^2+3 x+7, при этом вместо значения X вы должны вставить адрес ячейки, в которой обозначено, за какое число принято неизвестное, то есть «0». Затем нажимаем кнопку ENTER.

№ 10.png

  1. В ячейке, отвечающей за значение в строке формулы, вы получаете конкретное число. Теперь заходим во вкладку «Данные», переходим к пункту «Анализ «что, если»». Нажимаем на него и открываем дополнительный список, в котором кликаем по записи «Подбор параметра».

№ 11 2.png

  1. Перед вами открывается окно с ячейками для заполнения. Нам необходимо прописать значения во всех трех ячейках. Давайте сделаем все по порядку. В поле «Установить в ячейке» прописываем адрес ячейки с найденным числом. Следующее поле «Значение» ставим «0», а в ячейке «Изменяя значение», указываем адрес значения X, то есть ту графу, где прописан «0». После проделанных манипуляций нажимаем кнопку «Ок».

№ 12.png

Важно!

Обратите внимание, при правильном вводе всех данных начнется автоматический расчет с посекундным изменением чисел в ячейках. Поэтому дождитесь остановки и внесите подтверждение для всплывшего окна.

Теперь в появившемся окне нажимаем кнопку «ОК» для сохранения. Мы видим, что программа нашла ответ на наше уравнение, это будет «-1». Таким образом мы разобрали самые простые способы решения уравнений, с которыми разберётся даже начинающий пользователь офисной программы Microsoft Excel.

0,5166

Проделав три итерации, получим /?тах =614,

Уз =

1

0,5171

Лшах

тр

_ ^ . т

—— 0,614— , что совпало с решением в примере 2.1 1 .

EJ

EJ

Минимальная частота колебаний: *ymin = l/^/яmax — 0,04^EJ/m

Отложив по направлениям XJt Х2 и Х3 ординаты собственного вектора, получим соответствующие перемещения масс и форму изгиба стержней, показанные на рис.2.4.

0,5166

Рис.2.4. Перемещения масс и форма изгиба стержней при минимальной частоте колебаний системы

2.9.Примеры решения задач линейной алгебры

сиспользованием электронных таблиц Microsoft Excel

Рассмотрим решение системы линейных алгебраических уравнений (пример 2.1) методом Гаусса, используя таблицы Excel.

2л :, + 4 х 2 + Зх3 = 4,

3JC, + х2 — 2JC3 = -2,

>

(2.65)

4л, + 11JC2 + 7JC3 = 7.

Последователь! течь действий

Введем расширенную матрицу системы, как показано на рис.2.5, в ячейки A3:D5.

Осталось исключить неизвестное х2 из 3-го уравнения системы. Для этого реализуем описанный выше алгоритм для 2-й и 3-й строк (смотри 2-й шаг рис.2.5).

На этом первый этап метода Гаусс закончен, матрица системы приведена к треугольному виду.

На втором этапе (обратный ход метода Гаусса) последовательно найдем неизвестные, начиная с последней строки. Для этого в ячейки G12:G14 запишем формулы:

G4=D

13/С13

(для вычисления х3);

G3=D

12-С 12*G4

(для вычисления х2);

G2=D11-С11*G4-B11*G3 (для вычислениях:).

2.9.2. Решение СЛАУ с помощью надстройки «Поиск решения»

Систему линейных алгебраических уравнений можно также решить, используя надстройку «Поиск решения». При использовании данной надстройки строится последовательность

приближений

—(/)

,i=0,l,…n.

X

Назовем вектором невязок следующий вектор:

Л (/) = Л Х (°

— Д

(2 .66)

Задача

Excel

заключается в

том, чтобы

найти такое

приближение

—(/)

, при котором вектор невязок был бы нулевым,

X

т.е. добиться совпадения значений правых и левых частей системы АХ=В. В качестве примера используем ту же СЛАУ.

Последовательность действий:

1. Заготовим таблицу, как показано на рис.2.6. Введем коэффициенты системы (матрицу А) в ячейки АЗ:С5.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Решение системы уравнений в Microsoft Excel

Уравнения в Microsoft Excel

​Смотрите также​ Все элементы данной​Определитель системы больше 0​ результат подбора. Если​ Системы Линейных Алгебраических​B6:D8​Для этого выделите ячейки​ систему уравнений можно​ формулу массива. В​B​ подсчет определителя первичной​ том случае, если​x​=3*x^2+4*x-132​ обратной матрицы. Для​ мыши и выделяем​

​ порядку с учетом​Умение решать системы уравнений​

Варианты решений

​ строки нужно разделить​ – решение можно​ нужно его сохранить,​ Уравнений (СЛАУ) методом​. Затем вставьте функцию​F18:F20​ решить целым рядом​ ней производится вычитание​

Способ 1: матричный метод

​. Но на этот​ матрицы. Процедура происходит​ все определители будут​.​Вместо значения​ этого, как и​ область на листе,​ расположения каждого корня,​ часто может принести​ на коэффициент при​ найти по формуле​ вновь нажимаем ОК.​


​ обратной матрицы в​​MINVERSE​​, а в Строке формул введите =МУМНОЖ(A18:C20;F11:F13),​​ способов, каждый из​​ из третьей строки​​ раз сблизим обе​​ все по тому​
​ иметь значение, отличное​​Урок:​​«X»​​ в прошлый раз,​​ в которой находится​​ которому они соответствуют.​​ пользу не только​​ с. Введем в​​ Крамера (D​
​ В противном случае​​ MS EXCEL.​​(МОБР), как показано​​ затем нажмите ​​ которых имеет собственные​​ предыдущей группы данных​​ таблицы, так как​​ же алгоритму. Как​​ от нуля. Для​
​Подбор параметра в Excel​​подставляем адрес той​​ устанавливаем курсор в​​ матрица. Как видим,​​ Если в каком-то​​ в учебе, но​​ строку формулу массива:​​x​​ – «Отмена».​

  1. ​Запишем в ячейки основную​ ниже, и нажмите​CTRL+SHIFT+ENTER​ преимущества и недостатки.​ второй строки, умноженной​ это понадобится нам​ видим, определитель первичной​ расчета этого значения​Теперь попробуем решить систему​ ячейки, где расположено​ поле и с​ данные о координатах​ выражении один из​ и на практике.​ {=B12:E12/D12}.​/ |A|).​Для подбора параметра программа​ матрицу системы и​​Ctrl+Shift+Enter​​.​ Но все эти​​ на отношение второго​​ для работы в​

    Матрица в Microsoft Excel

  2. ​ таблицы тоже отличный​ в Экселе опять​ уравнений методом Крамера.​ число​​ зажатой левой кнопкой​​ размещения автоматически заносятся​

    Вектор B в Microsoft Excel

  3. ​ корней отсутствует, то​ В то же​В строке 15: отнимем​Для расчета Х​ использует циклический процесс.​ столбец свободных членов. ​.​В файле примера также приведено решение​ методы можно условно​​ коэффициента третьей и​​ дальнейшем. Важным условием​ от нуля, а​

    ​ имеется отдельная функция​

    ​ Для примера возьмем​​0​​ мыши выделяем курсором​ в поле окна.​

    ​ в этом случае​ время, далеко не​ от второй строки​1​ Чтобы изменить число​Определитель основной матрицы вычислим​​=MINVERSE(B2:D4)​​ системы 4-х и​ разделить на две​

    Переход в Мастер функций в Microsoft Excel

  4. ​ второй строки. В​​ является то, чтобы​​ значит, матрица считается​​ –​​ все ту же​, принятое нами за​​ соответствующую таблицу. Аналогичное​​ После того, как​ коэффициент считается равным​ каждый пользователь ПК​ третью, умноженную на​​: =U2/$U$1, где U2​​ итераций и погрешность,​

    Переход к аргументам функции МОБР в Microsoft Excel

  5. ​ с помощью формулы =МОПРЕД(A11:C13)​​=МОБР(B2:D4)​​ 5-и уравнений.​ большие группы: матричные​ нашем случае формула​​ в первой ячейке​​ невырожденной, то есть,​МОПРЕД​ систему, которую использовали​x​ действие проводим для​ эта задача выполнена,​ нулю. Если коэффициент​ знает, что в​ коэффициент при с​ – D1. Для​ нужно зайти в​Определитель =12, это означает,​Примечание:​Этот пример покажет, как​ и с применением​ будет иметь следующий​ матрицы​ система уравнений имеет​​. Синтаксис данного оператора​​ в​.​ внесения координат в​ наиболее очевидным было​ не обозначен в​ Экселе существует собственные​​ второй строки ({=(B11:E11-B16:E16*D11)/C11}).​​ расчета Х​ параметры Excel. На​ что матрица А – невырожденная,​Строка формул показывает,​ решить систему линейных​​ инструмента подбора параметров.​​ вид:​A​​ решения.​​ следующий:​

    Окно аргументов функции МОБР в Microsoft Excel

  6. ​Способе 1​Переходим во вкладку​ поле​ бы нажать на​ уравнении, но соответствующий​ варианты решений линейных​

    Матрица обратная данной в Microsoft Excel

  7. ​ В строке 14:​2​ вкладке «Формулы» установить​​ то есть, ее​​ что ячейки содержат​ уравнений в Excel.​ В некоторых случаях​​=B13:E13-$B$12:$E$12*(C13/$C$12)​​значение было отличным​Теперь пора найти корни​=МОПРЕД(массив)​:​«Данные»​​«Массив2»​​ кнопку​ корень имеется, то​

    ​ уравнений. Давайте узнаем,​

    ​ от первой строки​: =U3/$U$1. И т.д.​ предельное количество итераций,​ определитель отличен от​​ формулу массива. Это​​ К примеру, у​​ не всегда матричные​​После ввода формулы выделяем​

    Вставить функцию в Microsoft Excel

  8. ​ от нуля. В​​ уравнения. Корень уравнения​​Таким образом, как и​​14​​. Жмем на кнопку​​, только на этот​​«OK»​ считается, что коэффициент​​ как с применением​​ отнимаем вторую и​

    Переход к аргументам функции МУМНОЖ в Microsoft Excel

  9. ​ Получим корни уравнений:​​ относительную погрешность. Поставить​​ нуля. В этом​​ означает, что вы​​ нас есть следующая​ методы подходят для​ весь ряд и​ обратном случае следует​ будет равен отношению​ у функции​x1​«Анализ «что если»»​ раз выделяем значения​, но не стоит​ равен​ инструментария этого табличного​​ третью, умноженные на​​Для примера возьмем простейшую​ галочку «включить итеративные​ случае система линейных​​ не сможете удалить​​ система линейных уравнений:​ решения задачи. В​ применяем сочетание клавиш​ переставить строки местами.​​ определителя соответствующей преобразованной​​МОБР​​+2​​. Эта кнопка размещена​ колонки​​ торопиться. Дело в​​1​

    Окно аргументов функции МУМНОЖ в Microsoft Excel

  10. ​ процессора выполнить данную​ соответствующие коэффициенты ({=(B10:E10-B15:E15*C10-B16:E16*D10)/B10}).​ систему уравнений:​​ вычисления».​​ алгебраических уравнений имеет​​ какой-то один из​​5x​​ частности тогда, когда​​Ctrl+Shift+Enter​​Копируем первую строку двух​​ матрицы на определитель​, единственным аргументом выступает​x2​ на ленте в​B​ том, что нажатие​. Обозначаем полученную таблицу,​ задачу различными способами.​ В последнем столбце​3а + 2в –​​ единственное решение, которое​ полученных результатов, только​+​ определитель матрицы равен​

Корни системы уравнений в Microsoft Excel

​.​​ соединенных матриц в​

Способ 2: подбор параметров

​ первичной таблицы. Таким​ ссылка на обрабатываемую​+8​ блоке инструментов​. После того, как​ на эту кнопку​ как вектор​Скачать последнюю версию​ новой матрицы получаем​ 5с = -1​Дана система уравнений:​ может быть найдено​ все сразу. Чтобы​

​1y​

  1. ​ нулю. В остальных​​Теперь следует выполнить обратную​​ строчку ниже (для​​ образом, разделив поочередно​​ таблицу.​x4​​«Работа с данными»​​ вышеуказанные действия проведены,​

    ​ является равнозначным применению​

    ​A​​ Excel​​ корни уравнения.​2а – в​Значения элементов введем в​​ методом Крамера.​​ удалить все результаты,​​+​​ же случаях пользователь​

    Значение f(x) в Microsoft Excel

  2. ​ прогонку по методу​​ наглядности можно пропустить​​ все четыре определителя​​Итак, выделяем ячейку, в​​=218​. Открывается выпадающий список.​ опять не спешим​​ команды​​.​Любое уравнение может считаться​Вычисления в книге должны​​ – 3с =​​ ячейки Excel в​

    Переход к подбору параметра в Microsoft Excel

  3. ​Теперь последовательно будем заменять​ выделите диапазон​8z​ сам волен решать,​​ Гаусса. Пропускаем три​​ одну строку). В​ преобразованных матриц на​ которой будет выводиться​​7​​ Выбираем в нем​ жать на кнопку​​Enter​​Отдельно записываем значения после​​ решенным только тогда,​​ быть настроены следующим​​ 13​​ виде таблицы.​ столбцы матрицы А​B6:D8​​=​​ какой вариант он​ строки от последней​​ первую ячейку, которая​​ число​ определитель первой матрицы.​x1​​ позицию​​«OK»​

    Окно подбора параметра в Microsoft Excel

  4. ​. Но при работе​ знака «равно». Обозначаем​ когда будут отысканы​ образом:​а + 2в​Найдем обратную матрицу. Выделим​ на столбец свободных​​и нажмите клавишу​​46​

    Подбор пораметра произведен в Microsoft Excel

  5. ​ считает более удобным​ записи. В четвертой​ расположена в строке​-148​ Затем жмем на​​-3​​«Подбор параметра…»​или клавишу​​ с массивами после​​ их общим наименованием,​​ его корни. В​​Делается это на вкладке​

Результат вычисления корня уравнения в Microsoft Excel

​ – с =​ диапазон, куда впоследствии​ членов и вычислять​Delete​​4x​​ для себя.​

​ строке вводим формулу​​ ещё ниже предыдущей,​

Способ 3: метод Крамера

​, которое является определителем​ знакомую по предыдущим​x2​.​Enter​ завершения ввода формулы​​ как вектор​​ программе Excel существует​


​ «Формулы» в «Параметрах​​ 9​​ будут помещены элементы​​ соответствующие определители полученных​​.​​—​​Автор: Максим Тютюшев​
​ массива:​​ вводим следующую формулу:​​ первоначальной таблицы, мы​​ способам кнопку​​+5​​Запускается окно подбора параметров.​​, а набираем комбинацию​​ следует не кликать​​B​
​ несколько вариантов поиска​​ Excel». Найдем корень​​Коэффициенты запишем в матрицу​​ матрицы (ориентируемся на​​ матриц. Отношение определителей​​Используйте функцию​​2y​​Решим Систему Линейных Алгебраических​​=B17:E17/D17​
​=B8:E8-$B$7:$E$7*(B8/$B$7)​​ получим четыре корня.​​«Вставить функцию»​​x3​​ Как видим, оно​​ клавиш​​ по кнопке​​.​​ корней. Давайте рассмотрим​

  1. ​ уравнения х –​ А. Свободные члены​​ количество строк и​​ позволяет вычислить переменные​MMULT​​=​​ Уравнений (СЛАУ) методом​Таким образом, мы делим​​Если вы расположили матрицы​​ Как видим, они​

    Составление матриц в Microsoft Excel

  2. ​.​+12​ состоит из трех​Ctrl+Shift+Enter​​Enter​​Теперь для нахождения корней​ каждый из них.​ х3 + 1​ – в матрицу​​ столбцов в исходной​​ х.​(МУМНОЖ), чтобы вернуть​12​ обратной матрицы в​ последнюю рассчитанную нами​

    Четыре матрицы в Microsoft Excel

  3. ​ по-другому, то и​ равны значениям​Активируется окно​x4​ полей. В поле​.​, а произвести набор​ уравнения, прежде всего,​Самый распространенный способ решения​ = 0 (а​ В.​ матрице). Открываем список​В файле примера также​​ произведение матрицы​​6x​ MS EXCEL. В​

    ​ строку на её​

    ​ адреса ячеек формулы​5​​Мастера функций​​=213​«Установить в ячейке»​После данного действия в​

    ​ сочетания клавиш​ нам нужно отыскать​ системы линейных уравнений​ = 1, b​Для наглядности свободные члены​ функций (fx). В​​ приведено решение системы​​A-1​

    Переход к запуску мастера функций в Microsoft Excel

  4. ​+​​ этой статье нет​​ же третий коэффициент.​​ у вас будут​​,​. Переходим в категорию​5​​указываем адрес ячейки,​​ предварительно выделенной ячейке​Ctrl+Shift+Enter​​ матрицу, обратную существующей.​​ инструментами Excel –​

    Переход к аргументам функции МОПРЕД в Microsoft Excel

  5. ​ = 2) методом​​ выделим заливкой. Если​​ категории «Математические» находим​ 4-х уравнений и​и​​7y​​ теории, объяснено только​ После того, как​ иметь другое значение,​14​«Математические»​x1​ в которой находится​ отобразятся корни уравнения:​​. Выполняем эту операцию.​​ К счастью, в​ это применение матричного​ итерации с применением​ в первой ячейке​ МОБР. Аргумент –​ прямая проверка решения.​B​​+​​ как выполнить расчеты,​

    Окно аргументов функции МОПРЕД в Microsoft Excel

  6. ​ набрали формулу, выделяем​ но вы сможете​,​и среди списка​+​ формула​​X1​​Итак, после этого программа​ Эксель имеется специальный​ метода. Он заключается​

    Определитель для первой матрицы в Microsoft Excel

  7. ​ циклических ссылок. Формула:​ матрицы А оказался​ массив ячеек с​

    Расчет определителей для всех матриц в Microsoft Excel

  8. ​В программе Excel имеется​. Сперва выделите диапазон​4z​ используя MS EXCEL.​ всю строчку и​ высчитать их, сопоставив​8​ операторов выделяем там​x2​f(x)​,​ производит вычисления и​

    Определитель первичной матрицы в Microsoft Excel

  9. ​ оператор, который предназначен​ в построении матрицы​Х​ 0, нужно поменять​ элементами исходной матрицы.​ обширный инструментарий для​G6:G8​=​Решим систему из 3-х​ жмем сочетание клавиш​​ с теми формулами​​и​ наименование​-2​, рассчитанная нами чуть​X2​​ на выходе в​​ для решения данной​​ из коэффициентов выражений,​​n+1​​ местами строки, чтобы​​Нажимаем ОК – в​​ решения различных видов​​. Затем вставьте функцию​50​ линейных алгебраических уравнений​Ctrl+Shift+Enter​ и изображениями, которые​​15​​«МОПРЕД»​x3​

Корни системы уравнений определены в Microsoft Excel

Способ 4: метод Гаусса

​ ранее. В поле​,​ предварительно выделенной области​ задачи. Называется он​ а затем в​= X​


​ здесь оказалось отличное​​ левом верхнем углу​​ уравнений разными методами.​​MMULT​​В матричном представлении ее​​ с помощью обратной​​.​
​ приводятся здесь.​​. Таким образом, они​​. После этого жмем​​+4​​«Значение»​​X3​​ мы имеем матрицу,​
​МОБР​​ создании обратной матрицы.​​n​​ от 0 значение.​​ диапазона появляется значение.​​Рассмотрим на примерах некоторые​​(МУМНОЖ), которая показана​

  1. ​ можно записать в​ матрицы (матричным методом). ​​Поднимаемся на строку вверх​​После того, как формула​ в точности совпадают​​ на кнопку​​x4​​вводим число​​и​ обратную данной.​. Он имеет довольно​ Попробуем использовать данный​– F (X​Приведем все коэффициенты при​ Последовательно жмем кнопку​ варианты решений.​ ниже, и нажмите​​ виде​​СОВЕТ​ и вводим в​ введена, выделите весь​ с корнями, которые​

    Две матрицы в Microsoft Excel

  2. ​«OK»​=83​«0»​X4​Теперь нам нужно будет​ простой синтаксис:​ метод для решения​n​ а к 0.​

    ​ F2 и сочетание​

    ​Инструмент «Подбор параметра» применяется​Ctrl+Shift+Enter​AX=B​: Решение СЛАУ методом​ неё следующую формулу​ ряд ячеек и​ мы нашли, используя​.​6​. В поле​

    ​. Они будут расположены​ умножить обратную матрицу​=МОБР(массив)​ следующей системы уравнений:​​) / M, n​​ Кроме первого уравнения.​ клавиш Ctrl +​ в ситуации, когда​.​.​ Крамера приведено в​ массива:​ нажмите комбинацию клавиш​ обратную матрицу в​Запускается окно аргументов функции​

    Ряд заполнен значениями в Microsoft Excel

  3. ​x1​«Изменяя значения»​ последовательно. Таким образом,​ на матрицу​

    Вставка строки в Microsoft Excel

  4. ​Аргумент​14​ = 0, 1,​​ Скопируем значения в​​ Shift + Enter.​ известен результат, но​​=MMULT(B6:D8,G2:G4)​​5​

    Копирование в Microsoft Excel

  5. ​ статье Решение Системы Линейных​=(B16:E16-B21:E21*D16)/C16​Ctrl+Shift+Enter​способе 1​МОПРЕД​+2​указываем адрес ячейки,​ можно сказать, что​​B​​«Массив»​x1​​ 2, … .​​ первой строке двух​

    Вставка в Microsoft Excel

  6. ​Умножим обратную матрицу Ах-1х​ неизвестны аргументы. Excel​=МУМНОЖ(B6:D8;G2:G4)​1​ Алгебраических Уравнений (СЛАУ)​Жмем привычное уже нам​. К ряду будет​, что подтверждает правильность​. Как видим, оно​x2​ в которой расположено​ мы решили данную​

    ​, которая состоит из​

    ​— это, собственно,​+2​M – максимальное значение​​ матриц в ячейки​​ на матрицу В​

    Формула массива в Microsoft Excel

  7. ​ подбирает значения до​Соедините результаты. Выделите диапазон​8​ методом Крамера в​ сочетание клавиш для​ применена формула массива​ решения системы уравнений.​

    ​ имеет только одно​

    ​+​ значение​ систему. Для того,​ одного столбца значений,​ адрес исходной таблицы.​x2​ производной по модулю.​ В6:Е6. В ячейку​​ (именно в таком​​ тех пор, пока​

    Третья формула массива в Microsoft Excel

  8. ​G6:G8​x​ MS EXCEL.​ применения формулы массива.​

    ​ и он будет​

    ​Решить систему уравнений можно​ поле –​x3​

    Четвертая формула массива в Microsoft Excel

  9. ​x​ чтобы проверить правильность​ расположенных после знака​Итак, выделяем на листе​

    ​+8​

    ​ Чтобы найти М,​ В7 введем формулу:​ порядке следования множителей!).​​ вычисление не даст​​. Вставьте обобщенную формулу​

    Ввод последней формулы массива в Microsoft Excel

  10. ​46​Запишем в ячейки основную​Поднимаемся ещё на одну​ заполнен значениями. Таким​ также, применив метод​«Массив»​​-3​​, ранее принятое нами​​ решения достаточно подставить​​«равно»​​ область пустых ячеек,​​x4​ произведем вычисления:​ =B3:Е3-$B$2:$Е$2*(B3/$B$2). Выделим диапазон​ Выделяем диапазон, где​ нужный итог.​​ (показана ниже) и​​При А=​​ матрицу системы и​​ строку выше. В​​ образом мы произвели​​ Гаусса. Для примера​

Найденные корни уравнения в Microsoft Excel

​. В это поле​x4​ за​ в исходную систему​в выражениях. Для​ которая по размеру​=218​f’ (1) = -2​ В7:Е7. Нажмем F2​ впоследствии появятся элементы​Путь к команде: «Данные»​ нажмите​4​ столбец свободных членов. ​ неё вводим формулу​ вычитание из второй​ возьмем более простую​ вписываем адрес первой​=21​0​ выражений данные ответы​ умножения таблиц в​ равна диапазону исходной​7​

​ * f’ (2)​

lumpics.ru

Решение Системы Линейных Алгебраических Уравнений (СЛАУ) методом обратной матрицы в MS EXCEL

​ и сочетание клавиш​ результирующей матрицы (ориентируемся​ — «Работа с​Ctrl+Shift+Enter​-2​Систему ​ массива следующего вида:​ строки первой, умноженной​

​ систему уравнений из​ преобразованной матрицы. Для​Как и в первом​. После выполнения данных​

​ вместо соответствующих корней.​​ Экселе также имеется​ матрицы. Щелкаем по​x1​ = -11.​ Ctrl + Shift​ на число строк​

​ данными» — «Анализ​.​0​

​n ​​=(B15:E15-B20:E20*C15-B21:E21*D15)/B15​​ на отношение первых​​ трех неизвестных:​​ этого устанавливаем курсор​ способе, составляем матрицу​ действий жмем на​ Если равенство будет​ отдельная функция, которая​ кнопке​-3​Полученное значение меньше 0.​ + Enter. Мы​ и столбцов матрицы​ «что-если»» — «Подбор​

​=MMULT(MINVERSE(B2:D4),G2:G4)​,​линейных алгебраических уравнений с ​

​Опять выделяем всю строку​​ коэффициентов двух первых​​14​ в поле, а​A​​ кнопку​​ соблюдено, то это​

​ называется​«Вставить функцию»​x2​ Поэтому функция будет​ отняли от второй​ В). Открываем диалоговое​

​ параметра».​​=МУМНОЖ(МОБР(B2:D4);G2:G4)​​X=​n​​ и применяем сочетание​​ выражений системы.​

​x1​ затем выделяем матричный​из коэффициентов уравнений​

excel2.ru

Система линейных уравнений в Excel

​«OK»​ означает, что представленная​МУМНОЖ​, расположенную около строки​+5​ с противоположным знаком:​

​ строки первую, умноженную​ ​ окно математической функции​ ​Рассмотрим на примере решение​ ​Урок подготовлен для Вас​ ​y​ ​ неизвестными можно решать матричным​ ​ клавиш​
​После этого копируем полученную​ ​+2​ ​ диапазон. После этого​ ​ и таблицу​ ​.​
​ система уравнений решена​ ​. Данный оператор имеет​ ​ формул.​ ​x3​ ​ f (х) =​ ​ на отношение первых​ ​ МУМНОЖ. Первый диапазон​

​ квадратного уравнения х2​ командой сайта office-guru.ru​,​​ методом только тогда,​​Ctrl+Shift+Enter​

​ строку и вставляем​ ​x2​ ​ жмем на кнопку​ ​B​ ​После этого Эксель произведет​
​ верно.​ ​ следующий синтаксис:​ ​Выполняется запуск​ ​+12​ ​ -х + х3​ ​ элементов второго и​ ​ – обратная матрица.​ ​ + 3х +​ ​Источник: http://www.excel-easy.com/examples/system-of-linear-equations.html​ ​B=​
​ когда определитель основной​ ​.​ ​ её в строчку​ ​+8​ ​«OK»​

​из значений, которые​​ вычисление с помощью​​Урок:​=МУМНОЖ(Массив1;Массив2)​Мастера функций​​x4​​ – 1. М​​ первого уравнения.​​ Второй – матрица​ 2 = 0.​Перевела: Ольга Гелих​12​

  1. ​ матрицы системы отличен​​Теперь смотрим на числа,​​ ниже.​x3​​. Данная функция выводит​​ стоят после знака​​ подбора параметра. Об​​Обратная матрица в Excel​​Выделяем диапазон, в нашем​​. Переходим в категорию​=213​​ = 11.​​Копируем введенную формулу на​

    ​ В.​
    ​ Порядок нахождения корня​

    Линейные уравнения в Excel

​Автор: Антон Андронов​​6​ от нуля (в​ которые получились в​Выделяем две первые строки​=110​ результат в одну​«равно»​ этом сообщит появившееся​Второй известный способ решения​ случае состоящий из​​«Математические»​​5​​В ячейку А3 введем​​ 8 и 9​

  1. ​Закрываем окно с аргументами​​ средствами Excel:​​Решим Систему Линейных Алгебраических​7​​ противном случае мы​​ последнем столбце последнего​​ после пропущенной строчки.​​7​​ ячейку, а не​​.​​ информационное окно. В​​ системы уравнений в​ четырех ячеек. Далее​​. В представившемся списке​​x1​

    ​ значение: а =​
    ​ строки. Так мы​

    Линейные уравнения в Excel

  2. ​ функции нажатием кнопки​​Введем в ячейку В2​​ Уравнений (СЛАУ) методом​4​ имеем линейно зависимые​​ блока строк, рассчитанного​​ Жмем на кнопку​

    ​x1​
    ​ массивом, поэтому для​

    Линейные уравнения в Excel

​Далее делаем ещё четыре​ нем следует нажать​
​ Экселе – это​
​ опять запускаем​

​ ищем наименование​

office-guru.ru

Решение Системы Линейных Алгебраических Уравнений (СЛАУ) методом Крамера в MS EXCEL

​+​ 1. Точность –​ избавились от коэффициентов​ ОК. Последовательно нажимаем​ формулу для нахождения​ Крамера в MS​z​ уравнения и соответственно​

​ нами ранее. Именно​«Копировать»​-3​ получения расчета не​ таблицы. Каждая из​ на кнопку​ применение метода подбора​Мастер функций​

​«МОБР»​x2​

​ три знака после​​ перед а. Сохранили​ кнопку F2 и​ значения функции. В​ EXCEL. В этой​50​ решение систем не​ эти числа (​

​, которая расположена на​x2​ нужно прибегать к​

​ них является копией​«OK»​

​ параметров. Суть данного​, нажав значок​. После того, как​-2​ запятой. Для расчета​ только первое уравнение.​ комбинацию Ctrl +​ качестве аргумента применим​ статье нет теории,​Если​

​ единственное). В нашем​4​ ленте во вкладке​+5​ нажатию комбинации клавиш​ матрицы​.​ метода заключается в​

​«Вставить функцию»​ оно отыскано, выделяем​x3​ текущего значения х​

excel2.ru

Решение уравнений в Excel методом итераций Крамера и Гаусса

​Приведем к 0 коэффициенты​ Shift + Enter.​ ссылку на ячейку​ объяснено только как​

​А-1​ случае определитель =12.​

Решение уравнений методом подбора параметров Excel

​,​«Главная»​x3​Ctrl+Shift+Enter​A​Результат вычисления корня уравнения​ поиске от обратного.​.​

​ его и жмем​+4​ в соседнюю ячейку​ перед в в​Получены корни уравнений.​

Подбор параметра.

​ В1.​ выполнить расчеты, используя​(обратное А) существует,​Вычислим обратную матрицу с​7​.​

  1. ​=32​.​, только у этих​ будет находиться в​ То есть, основываясь​В категории​Формула.
  2. ​ на кнопку​x4​ (В3) введем формулу:​ третьем и четвертом​Возьмем систему уравнений из​Открываем меню инструмента «Подбор​ MS EXCEL.​ мы можем умножить​ помощью формулы массива​и​Пропускаем строку после последней​5​Функция производит подсчет результата​ копий поочередно один​Параметры.
  3. ​ той ячейке, которую​ на известном результате,​«Математические»​«OK»​=83​ =ЕСЛИ(B3=0;A3;B3-(-B3+СТЕПЕНЬ(B3;3)-1/11)).​

Пример. Параметры вычислений.

​ уравнении. Копируем строки​ предыдущего примера:​ параметра». В графе​Метод Крамера применяется для​ обе части на​ МОБР().​5​ записи на листе.​x1​ и выводит его​ столбец заменен на​

​ мы назначили в​

Как решить систему уравнений матричным методом в Excel

​ мы производим поиск​

Система уравнений.

  1. ​, запустившегося​.​6​Таблица.
  2. ​В ячейке С3 проконтролируем​ 6 и 7​Для их решения методом​ «Установить в ячейку»​ решения систем линейных​А-1​Для этого выделите ячейки ​) будут являться корнями​ Выделяем первую ячейку​+​ в заранее выделенную​ таблицу​Аргументы функции.
  3. ​ поле​ неизвестного аргумента. Давайте​Мастера функций​Запускается окно аргументов функции​x1​ значение f (x):​ (только значения). Переносим​Диапазон.
  4. ​ Крамера вычислим определители​ — ссылка на​ алгебраических уравнений (СЛАУ),​, чтобы получить​A18:C20​ данной системы уравнений.​ в следующей строке.​x2​ ячейку. Как видим,​B​«Изменяя значения»​ для примера используем​, выделяем наименование​МОБР​+2​Аргументы1.
  5. ​ с помощью формулы​ их ниже, в​ матриц, полученных заменой​ ячейку В2, где​ в которых число​X=A-1B​

Корни уравнений.

​, а в Строке​

Решение системы уравнений методом Крамера в Excel

​ Проверить это можно,​ Кликаем правой кнопкой​

Система уравнений.

​-2​ в нашем случае​. У первой таблицы​. В нашем случае,​ квадратное уравнение​«МУМНОЖ»​

Матрицы.

​. Оно по числу​x2​ =B3-СТЕПЕНЬ(B3;3)+1.​ строки 10 и​

МОПРЕД.

​ одного столбца в​ находится формула. В​ неизвестных переменных равно​

МОПРЕД1.

​. Чтобы решить эту​ формул введите =МОБР(A11:C13), затем​ подставив их вместо​ мыши. В открывшемся​​x3​​ определитель равен​

​ – это первый​​ как видим,​​3x^2+4x-132=0​и жмем на​ аргументов имеет всего​​+​​Корень уравнения – 1,179.​ 11. Эти данные​

Корни уравнений1.

Решение систем уравнений методом Гаусса в Excel

​ матрице А на​ поле «Значение» вводим​

​ числу уравнений и​ систему линейных уравнений​
​ нажмите​ значений​ контекстном меню наводим​
​=17​-740​ столбец, у второй​

​x​Принимаем значение​ кнопку​ одно поле –​

Матрица А.

​x3​ Введем в ячейку​ должны остаться неизменными.​ столбец-матрицу В.​ 0. Это то​ определитель основной матрицы​ в Excel, выполните​CTRL+SHIFT+ENTER​

  1. ​X1​ курсор на пункт​Опять последовательно записываем коэффициенты​, то есть, не​ таблицы – второй​будет равен​x​«OK»​«Массив»​-3​ А3 значение 2.​ В ячейку В12​Для расчета определителей используем​ значение, которое нужно​ отличен от нуля. ​ следующие действия:​.​,​Матрица А.
  2. ​«Специальная вставка»​ в таблицу​ является равным нулю,​ и т.д.​6​за равное​Копирование формулы.
  3. ​.​. Тут нужно указать​x4​ Получим тот же​ вводим формулу массива.​ функцию МОПРЕД. Аргумент​ получить. В графе​Решим систему из 3-х​Используйте функцию​Решение системы уравнений получим​X2​. В запустившемся дополнительном​Формула в массиве.
  4. ​A​ что нам подходит.​Теперь нам нужно высчитать​.​0​Активируется окно аргументов функции​ адрес нашей таблицы.​=21​ результат:​Прямую прогонку по методу​ – диапазон с​Деление на коэффициент.
  5. ​ «Изменяя значение ячейки»​ уравнений.​MINVERSE​ умножением обратной матрицы​и​ списке выбираем позицию​, а свободные члены,​Аналогичным образом производим подсчет​ определители для всех​Этот результат также можно​. Высчитываем соответствующее для​МУМНОЖ​ Для этих целей​

Пример1.

Примеры решения уравнений методом итераций в Excel

​Заполняем матрицу числами, которые​Скачать решения уравнений в​ Гаусса сделали. В​

Параметры вычислений.

​ соответствующей матрицей.​ — В1. Здесь​СОВЕТ​(МОБР), чтобы вернуть​ и столбца свободных​X3​«Значения»​ расположенные после знака​ определителей для остальных​ этих таблиц. Система​

​ проверить, подставив данное​​ него значение​​. В поле​​ устанавливаем курсор в​​ являются коэффициентами уравнения.​​ Excel​​ обратном порядке начнем​Рассчитаем также определитель матрицы​ должен отобразиться отобранный​

​: Решение СЛАУ методом​ обратную матрицу​ членов. Перемножить матрицы​в выражения.​

​.​«равно»​ трех таблиц.​

​ уравнений будет иметь​ значение в решаемое​f(x)​«Массив1»​ это поле. Затем​ Данные числа должны​Корень на заданном промежутке​

​ прогонять с последней​ А (массив –​ параметр.​ обратной матрицы приведено​А​ можно с помощью​Как видим, в Экселе​В следующую строку вводим​— в таблицу​

ЕСЛИ.

​На завершающем этапе производим​ решения только в​ выражение вместо значения​, применив следующую формулу:​

​заносим координаты нашей​ зажимаем левую кнопку​ располагаться последовательно по​ один.​ строки полученной матрицы.​

​ диапазон матрицы А).​После нажатия ОК отобразится​

Пример2.

​ в статье Решение​. Сначала выделите диапазон​

exceltable.com

​ формулы массива =МУМНОЖ().​

Понравилась статья? Поделить с друзьями:

А вот еще интересные статьи:

  • Как решить уравнение в microsoft excel
  • Как решить уравнение в excel с шагом
  • Как решить уравнение в excel онлайн
  • Как решить тригонометрическое уравнение в excel
  • Как решить транспортную задачу в excel с помощью поиска решений

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии