Прогнозирование продаж в Excel не сложно составить при наличии всех необходимых финансовых показателей.
В данном примере будем использовать линейный тренд для составления прогноза по продажам на бушующие периоды с учетом сезонности.
Линейный тренд хорошо подходит для формирования плана по продажам для развивающегося предприятия.
Excel – это лучший в мире универсальный аналитический инструмент, который позволяет не только обрабатывать статистические данные, но и составлять прогнозы с высокой точностью. Для того чтобы оценить некоторые возможности Excel в области прогнозирования продаж, разберем практический пример.
Пример прогнозирования продаж в Excel
Рассчитаем прогноз по продажам с учетом роста и сезонности. Проанализируем продажи за 12 месяцев предыдущего года и построим прогноз на 3 месяца следующего года с помощью линейного тренда. Каждый месяц это для нашего прогноза 1 период (y).
Уравнение линейного тренда:
y = bx + a
- y — объемы продаж;
- x — номер периода;
- a — точка пересечения с осью y на графике (минимальный порог);
- b — увеличение последующих значений временного ряда.
Допустим у нас имеются следующие статистические данные по продажам за прошлый год.
- Рассчитаем значение линейного тренда. Определим коэффициенты уравнения y = bx + a. В ячейке D15 Используем функцию ЛИНЕЙН:
- Выделяем ячейку с формулой D15 и соседнюю, правую, ячейку E15 так чтобы активной оставалась D15. Нажимаем кнопку F2. Затем Ctrl + Shift + Enter (чтобы ввести массив функций для обеих ячеек). Таким образом получаем сразу 2 значения коефициентов для (a) и (b).
- Рассчитаем для каждого периода у-значение линейного тренда. Для этого в известное уравнение подставим рассчитанные коэффициенты (х – номер периода).
- Чтобы определить коэффициенты сезонности, сначала найдем отклонение фактических данных от значений тренда («продажи за год» / «линейный тренд»).
- Рассчитаем средние продажи за год. С помощью формулы СРЗНАЧ.
- Определим индекс сезонности для каждого месяца (отношение продаж месяца к средней величине). Фактически нужно каждый объем продаж за месяц разделить на средний объем продаж за год.
- В ячейке H2 найдем общий индекс сезонности через функцию: =СРЗНАЧ(G2:G13).
- Спрогнозируем продажи, учитывая рост объема и сезонность. На 3 месяца вперед. Продлеваем номера периодов временного ряда на 3 значения в столбце I:
- Рассчитаем значения тренда для будущих периодов: изменим в уравнении линейной функции значение х. Для этого можно просто скопировать формулу из D2 в J2, J3, J4.
- На основе полученных данных составляем прогноз по продажам на следующие 3 месяца (следующего года) с учетом сезонности:
Общая картина составленного прогноза выглядит следующим образом:
График прогноза продаж:
График сезонности:
Алгоритм анализа временного ряда и прогнозирования
Алгоритм анализа временного ряда для прогнозирования продаж в Excel можно построить в три шага:
- Выделяем трендовую составляющую, используя функцию регрессии.
- Определяем сезонную составляющую в виде коэффициентов.
- Вычисляем прогнозные значения на определенный период.
Нужно понимать, что точный прогноз возможен только при индивидуализации модели прогнозирования. Ведь разные временные ряды имеют разные характеристики.
- бланк прогноза деятельности предприятия
Чтобы посмотреть общую картину с графиками выше описанного прогноза рекомендуем скачать данный пример:
Выручка — то, с чего начинается анализ эффективности любого бизнеса. В этой статье узнаем, как делать верхнеуровневый факторный анализ выручки на основе данных по цене и количеству проданных единиц, а также по среднему чеку и количеству покупателей.
- Два способа расчета выручки
- Как посчитать выручку в Excel пример
- Факторный анализ изменения выручки
Два способа расчета выручки
В данный статье мы будет «считать» выручку именно с позиции аналитика — не имея доступ к кассовому аппарату и выпискам со счетом компании. У аналитика обычно есть только цифры, которыми нужно уметь оперировать.
Выручку можно считать несколькими способами.
Способ 1. Расчет выручки от цены и объема продаж
Выручка = Кол-во проданных единиц х Цена товара
Но этот способ подходит, если считать выручку в разрезе каждого SKU (stock keeping unit, или позиция в ассортименте с уникальными характеристиками и ценой).
Другими словами, если у вас есть “Печенье 100 грамм” по цене 200 руб. и “Печенье 140 грамм” по цене 130 руб. — это два разных SKU, и для них подходит вышеуказанная формула.
Способ 2. Расчет выручки от среднего чека и количества покупателей
Выручка = Кол-во покупателей (чеков) х Средний чек
Этот способ подходит для расчета выручки в укрупненном разрезе — для торговой точки или компании в целом. Также такой способ подходит для расчета выручки в разрезе периода (например, по месяцам).
Рассмотрим примеры и формулы расчета выручки в Excel.
Расчет выручки от цены и объема продаж
В примере приведена таблица продаж пряжи для вязания с указанием проданного количества пряжи и цены за единицу.
Чтобы определить выручку в разрезе каждой позиции в ассортименте, нужно умножить количество проданных единиц товара на его цену.
Чтобы определить суммарную выручку за весь проданный товар, нужно просуммировать выручку по каждой единице товара.
Есть еще один способ определить суммарную выручку от цены и объема — при помощи функции СУММПРОИЗВ.
Синтаксис функции:
=СУММПРОИЗВ(массив1;[массив2];…;[массив n])
Суть работы функции СУММПРОИЗВ в том, что она последовательно перемножает элементы указанных массивов между собой, после чего суммирует.
В нашем примере массив 1 — это количество, а массив 2 — цена. Формула последовательно умножает и суммирует элементы:
(100 * 200) + (226 * 146) + …+(256 * 394)
Как видите, результат вычисления функции СУММПРОИЗВ получился аналогичный предыдущему варианту.
Достаточно распространенной ошибкой является считать выручку как количество проданного товара * среднюю цену товара.
Этот способ приводит к ошибкам, например, в данном примере средняя цена товара 261,9, если ее умножить на количество, то получим выручку 261,9*1524 = 399 135, хотя на самом деле она 393 156.
Расчет выручки от среднего чека и количества покупателей
Здесь нужно умножить количество чеков (1 чек = 1 покупатель) на средний чек.
Важный момент: количество чеков и средний чек должны относиться к строго одинаковому периоду и одной и той же организационное единице (например, магазин).
Итоговую выручку можно посчитать:
1. Просуммировав выручки за отдельные периоды.
2. Умножив суммарное количество чеков за все периоды на средний чек за период.
Здесь кроется еще одна распространенная ошибка — усреднение средних чеков.
Нельзя определять средний чек за период как среднее между средними чеками за отдельные периоды.
Более подробно про особенности расчета среднего чека можно прочитать в статье Анализ среднего чека в продажах
Факторный анализ изменения выручки
Факторный анализ изменения выручки в зависимости от цены и объема продаж
Рассмотрим на примере динамики выручки между двумя месяцами.
Январь — выручка 393 156
Февраль — выручка 460 190.
Дельта +17%
Обратите внимание на формулу расчета динамики выручки в процентах:
Выручка за текущий период / Выручка за предыдущий период — 1
Добавим еще два столбца, которые будут показывать дельту изменения Кол-ва проданных единиц и Цены.
Формулы для них пропишем аналогично формуле для изменения выручки, например:
∆ Кол-ва ед. = Кол-во проданных ед. за текущий мес / Кол-во проданных ед. за предыдущий мес. — 1
То же самое для Цены.
Теперь обратим внимание на столбец итогов. Наша задача — прочитать его:
Выручка выросла на +17% из-за роста количества проданного товара на +8% и роста цены товара на +8%.
Обратите внимание, что в дельты составляющих в сумме не обязательно равны итоговой дельте (8% + 8% не равно 17%).
Таким образом, получили факторный анализ изменения выручки в зависимости от цены и объема проданной продукции.
Факторный анализ изменения выручки в зависимости от количества покупателей и среднего чека
Данный вид анализа выручки похож на предыдущий — он так же складывается из расчета изменения двух компонентов: количества покупателей (или количества чеков, это то же самое) и среднего чека.
Для примера рассмотрим динамику выручки февраля к январю. Формулы для расчета показателей аналогочны предыдущий примерам, но на всякий случай приведены на скриншоте под цифрами.
“Прочитаем” цифры:
Выручка выросла на +9% из-за роста количества покупателей на +34% при снижении среднего чека на -19%.
Получили факторный анализ выручки в зависимости от количества покупателей и среднего чека.
В этой статье мы узнали, как можно посчитать выручки и познакомились с приемами, которыми можно произвести факторный анализ выручки.
Вам может быть интересно:
Хитрости »
23 Март 2017 157085 просмотров
Скачать файл, используемый в видеоуроке:
Прогноз_продаж.xls (59,5 KiB, 34 787 скачиваний)
Прогнозирование продаж является неотъемлемой частью при планировании работы коммерческих и финансовых служб, поэтому задача довольно актуальная. Вариантов построения прогнозов достаточное множество, но я хочу показать как сделать простой, но в то же время достаточно жизнеспособный прогноз «на скорую руку», без лишних телодвижений и поправок «на ветер»(читайте как: без кучи доп.расчетов, которые применяются для создания более точных прогнозов). Почему я это уточняю? Потому что на мой взгляд, каким бы точным ни был прогноз продаж – это всего лишь предположение и быть уверенным в том, что именно так и будет развиваться ход событий, никак нельзя.
И тем не менее при помощи встроенных в Excel функций мы можем построить довольно неплохой прогноз даже с учетом сезонности. Плюс я хочу показать как сделать не просто прогноз, а прогноз с отклонениями – пессимистичный и оптимистичный. С помощью подобной модели можно будет выстроить тактику продаж таким образом, чтобы постараться максимально «вписаться» в границы между пессимистичным и оптимистичным прогнозом.
А в довершение мы построим красивый график с прогнозом.
Исходные данные
Для расчета прогноза потребуются данные о продажах за ранние периоды. Чем больше данных, тем точнее будет прогноз. Желательно, чтобы были помесячные данные хотя бы за два года. На мой взгляд это тот минимум, на основании которого можно построить весьма точный прогноз с учетом прошлого опыта. Именно из таких данных и будем исходить. Предположим, что у нас есть данные с января 2013 года по август 2015, в табличном виде:
Нам необходимо рассчитать прогноз продаж на будущий год: с сентября 2015 по август 2016 и отразить это на графике. Я специально беру рваный период посреди года, чтобы показать, что начало прогноза может быть с любой даты.
Чтобы дальше в статье не запутать вас столбцами и где они должны быть добавлены, сразу приведу конечную структуру:
Т.е. у нас должно быть именно в указанном порядке 7 столбцов: Период; Продажи компании, руб.; Прогноз; Оптимистичный; Пессимистичный; Коэффициент сезонности; Отклонение. И чтобы все получилось они должны идти точно в таком же порядке, как на картинке выше.
Советую сразу создать все эти столбцы или скачать готовую модель для примера, чтобы дальше использовать именно её для пошагового выполнения описанных ниже действий:
Скачать файл:
Прогноз_продаж.xls (59,5 KiB, 34 787 скачиваний)
В файле два листа:
- Исходные данные — только фактические данные по продажам, без доп.столбцов, чтобы можно было самостоятельно с нуля построить модель
- Прогноз — лист с готовыми функциями и графиком прогноза
В самый низ таблицы, после последней фактической даты, я добавил даты, на которые необходимо построить прогноз(от сен.2015 до авг.2016).
Расчет прогноза
Для расчета непосредственно прогноза в Excel есть специальная функция, которая основываясь на данных предыдущих периодов предсказывает вероятные значения для указанной даты. Она так и называется – ПРЕДСКАЗ(FORECAST). Функция основана на линейной регрессии и специально предназначена именно для прогнозирования продаж, потребления товара и пр. В столбец Прогноз (столбец C – сразу после столбца с суммами продаж) в ячейку
C34
записываем функцию (и распространяем на все прогнозируемые даты –
C34:C45
):
=ПРЕДСКАЗ(A34;$B$2:$B$33;$A$2:$A$33)
=FORECAST(A34,$B$2:$B$33,$A$2:$A$33)
Сама функция требует указания следующих входных данных:
- х — Дата, значение для которой необходимо спрогонозировать (A34)
- Известные значения y — ссылка на ячейки таблицы с суммами продаж за известные периоды ($B$2:$B$33)
- Известные значения x — ссылка на ячейки таблицы с дата продаж за известные периоды ($A$2:$A$33)
С одной стороны, мы уже имеем готовый прогноз, а с другой…Данная функция пока не учитывает фактор сезонности. А это в продажах в большинстве случаев немаловажный фактор. Поэтому желательно потратить еще чуточку времени и сделать так, чтобы прогноз получился еще больше приближен к реальности. Для учета фактора сезонности сначала необходимо вычислить коэффициент сезонности для каждого месяца. Для этого добавим в столбец Коэффициент сезонности следующую формулу:
=(($B$2:$B$13+$B$14:$B$25)/СУММ($B$2:$B$25))*12
=(($B$2:$B$13+$B$14:$B$25)/SUM($B$2:$B$25))*12
Формула вводится в ячейку как формула массива и сразу в 12 ячеек(чтобы получить коэффициенты для каждого месяца года). Для этого сначала выделяем ячейки F2:F13 -переходим в строку формул и вводим формулу выше. После указания верных ссылок на нужные ячейки завершаем ввод формулы одновременным нажатием трех клавиш: Ctrl+Shift+Enter. Если этого не сделать, то функция вернет значение ошибки #ЗНАЧ!(#VALUE!)
Подробнее про принцип работы формулы: она берет отдельно сумму каждого месяца за 2013 и 2014 год, складывает их. Делит полученное значение на общую сумму продаж за весь период целых месяцев(т.е. 24 месяца) и умножает на 12, чтобы получить коэффициент именно за один месяц. И так для каждого месяца. Т.е. для ячейки F2 расчет будет выглядеть следующим образом:
=((56 769+68 521)/ 1 542 293)*12
=((сумма за янв.2013 + сумма за янв.2014)/ общая сумма за два года(янв.2013 – дек.2014))*12
В результате для января получим коэффициент 0,974834224106574, для февраля — 0,989928632237843 и т.д. Я для наглядности назначил ячейкам процентный формат(правая кнопка мыши —Формат ячеек -вкладка Число —Процентный(Format cells —Number —Percent), два знака после запятой):
Теперь добавим учет этих коэффициентов для расчета прогноза в имеющуюся функцию ПРЕДСКАЗ(ячейки C34:C45):
=ПРЕДСКАЗ(A34;$B$2:$B$33;$A$2:$A$33)*ИНДЕКС($F$2:$F$13;МЕСЯЦ(A34))
=FORECAST(A34,$B$2:$B$33,$A$2:$A$33)*INDEX($F$2:$F$13,MONTH(A34))
Здесь применяется функция ИНДЕКС(INDEX), в которой первым аргументом указываем ссылку на 12 ячеек с коэффициентами сезонности($F$2:$F$13), а вторым – номер месяца, чтобы вернуть коэффициент именно для нужного месяца(для этого используем функцию МЕСЯЦ(MONTH), которая возвращает только номер месяца из указанной даты). Для сентября 2015 это будет выглядеть так:
=ПРЕДСКАЗ(A34; $B$2:$B$33; $A$2:$A$33)*ИНДЕКС({97,48%:98,99%:90,38%:94,66%:100,86%:99,02%:100,66%:110,39%:100,47%:104,82%:105,13%:97,14%}; 9)
Основную задачу выполнили – у нас есть прогноз на будущие периоды. Теперь осталось в дополнение к самому прогнозу, создать допустимые верхние и нижние границы, которые часто еще называют оптимистичный прогноз и пессимистичный(но по сути это просто возможное отклонение от прогнозных данных). Такой прогноз даст нам возможность более гибко планировать тактику на будущие периоды.
Для того, чтобы построить такие прогнозы необходимо рассчитать допустимое отклонение от прогнозируемых значений. Здесь так же будем использовать имеющиеся в Excel функции. В ячейку G2 запишем формулу:
=ДОВЕРИТ(0,05; СТАНДОТКЛОН(C34:C45); СЧЁТ(C34:C45))
=CONFIDENCE(0.05,STDEV(C34:C45),COUNT(C34:C45))
ДОВЕРИТ(CONFIDENCE) – возвращает доверительный интервал, используя нормальное распределение.
- алфа – уровень значимости для вычисления доверительного уровня. Используемое в формуле 0,05 означает доверительный уровень в 95%. В большинстве случаев это оптимальное значение
- станд_откл – стандартное отклонение генеральной совокупности. Должно быть известно. Но т.к. мы этими данными не располагаем – то это значение вычисляем при помощи функции СТАНДОТКЛОН(STDEV), передавая ей для расчетов спрогнозированные данные
- размер – указывается целое число, обозначающее количество данных для выборки. Как правило равно количеству спрогнозированных данных. У нас количество определяется функцией СЧЁТ, которая подсчитывает количество чисел в указанных ячейках.
Теперь в ячейки столбцов Оптимистичный и Пессимистичный(D и E), начиная со строки 34, запишем такие формулы:
Оптимистичный: =$C34+$G$2
Пессимистичный: =$C34-$G$2
Т.е. мы для оптимистичного прогноза берем сумму прогноза и прибавляем к ней сумму рассчитанного отклонения. А для пессимистичного, мы сумму отклонения вычитаем. Вот мы и получили все необходимые данные.
График
Но было бы кощунством с нашей стороны проделать такую работу и не использовать возможности Excel для построения красивого графика. Придется добавить немного шаманства(на деле, мы уже начали шаманить, когда стали записывать прогноз в отдельный столбец, а не продолжать его в том же столбце, что и фактические продажи). В ячейки C33, D33 и E33 скопируем значение из ячейки B33, чтобы они все имели одинаковые значения:
Теперь выделяем все данные (A1:E45), переходим на вкладку Вставка(Insert) – группа Диаграммы(Charts) —График(Line). И получим такую картину:
Наглядно и сразу понятно что к чему и чего можно ожидать.
- Синим – фактические продажи
- Оранжевый – прогноз
- Серый – Оптимистичный прогноз
- Желтый – Пессимистичный
Согласитесь, такой график смотрится достаточно эффектно и может украсить собой отчет для руководства. Особенно, если проявить немного фантазии и отформатировать график в соответствии с корпоративными цветами компании.
Быстрый прогноз в Excel 2016 и выше
Начиная с версии 2016 в Excel появилась замечательная возможность создать прогноз двумя кликами мыши. При этом сразу с оптимистичным и пессимистичным развитием событий и графиком. За основу возьмем все те же исходные данные из двух столбцов:
Выделяем необходимые данные из двух столбцов -переходим на вкладку Данные(Data) -группа Прогноз(Forecast) —Лист прогноза(Forecast Sheet):
В появившемся окне раскрываем пункт Параметры(Options) и настраиваем:
- Завершение прогноза(Forecase End) – указывается дата, которой должен заканчиваться прогноз. Я советую всегда проверять эту дату, т.к. по умолчанию Excel почти всегда выставляет некую среднюю дату, которая отличается от необходимой.
- Начало прогноза(Forecase Start) – указывается дата, с которой необходимо начать строить прогноз. Как правило это последняя дата фактических данных. Если указать дату, которая будет раньше последней даты фактических данных, то для построения прогноза будут использоваться данные только ДО этой даты (так же это называется «ретроспективным прогнозированием»).
- Доверительный интервал(Confidence interval) – этот пункт поможет понять, насколько точно построен прогноз. Чем больше будет доверительный интервал, тем меньше точность прогноза и чем меньше доверительный интервал – тем выше точность прогноза. Что вполне логично. По умолчанию определяется для 95% точек, хотя его можно изменить в соответствующем поле. Если интервал создавать не нужно – снять галочку.
- Сезонность(Seasonality) – как понятно из названия, отвечает за определение фактора сезонности. Лучше оставлять автоматическим, при котором сезонность определяется на основании всех точек месяцев(т.е. 12). Но если этот фактор необходимо рассчитывать из иного количества точек, то необходимо выбрать Установка вручную и указать нужное количество точек. Но следует учитывать, что если точек будет недостаточно – то прогноз может быть очень неточным и график в итоге будет иметь вид, далекий от ожидаемого.
- Диапазон временной шкалы(Timeline Range) – указывается диапазон значений с датами фактических продаж, на основании которых необходимо построить прогноз. По размерам должен совпадать с параметром Диапазон значений.
- Диапазон значений(Values Range) – указывается диапазон значений с суммами фактических продаж, на основании которых необходимо построить прогноз. По размерам должен совпадать с параметром Диапазон временной шкалы.
- Заполнить отсутствующие точки с помощью(Fill Missing Poins Using) – если каких-то данных не хватает(например, имеются пропуски в ячейках с суммами), то можно выбрать чем эти данные заполнить. По умолчанию используется интерполяция. Это означает, что отсутствующие данные вычисляется как взвешенное среднее соседних ячеек, если отсутствует менее 30 % точек. Если необходимо заполнять отсутствующие точки нулями, то необходимо выбрать из выпадающего списка пункт Нули.
- Объединить дубликаты с помощью(Aggregate Duplicates Using) – если в фактических данных есть повторяющиеся даты, то Excel объединит их в одну точку с этой датой, а в качестве суммы подставит среднее арифметическое для этой даты. Это оптимальный вариант, но так же допускается выбрать из списка и другую функцию: Количество, СЧЁТЗ, Максимум, Медиана, Минимум, Сумма.
- Включить статистические данные прогноза(Include Forecast Statistics) – при включении данного пункта на листе с таблицей графика правее основных данных будет создана таблица с дополнительной статистической информации о прогнозе. В таблице при помощи функции ПРЕДСКАЗ.ЕTS.СТАТ будут рассчитаны коэффициенты сглаживания (Альфа, Бета, Гамма), и метрики ошибок (MASE, SMAPE, MAE, RMSE).
После нажатия кнопки Создать(Create) будет создан новый лист, в котором будет создана таблица со всеми необходимыми данными и формулами и готовым графиком:
если при создании был отмечен пункт Включить статистические данные прогноза(Include Forecast Statistics), то правее таблицы основных данных будет так же создана таблица статистических данных:
Скачать файл:
Прогноз_продаж.xls (59,5 KiB, 34 787 скачиваний)
Так же см.:
Как быстро подобрать оптимальный вариант решения
Автообновляемая сводная таблица
Статья помогла? Поделись ссылкой с друзьями!
Видеоуроки
Поиск по меткам
Access
apple watch
Multex
Power Query и Power BI
VBA управление кодами
Бесплатные надстройки
Дата и время
Записки
ИП
Надстройки
Печать
Политика Конфиденциальности
Почта
Программы
Работа с приложениями
Разработка приложений
Росстат
Тренинги и вебинары
Финансовые
Форматирование
Функции Excel
акции MulTEx
ссылки
статистика
Автор: Your Mentor. Дата публикации: 15 июля 2019.
Прогнозирование продаж является важным видом деятельности практически для любого бизнеса, поскольку это влияет на все: на вашу компанию, ваших клиентов и ваших деловых партнеров. Без прогнозирования продаж вы движетесь вслепую, а ваш бизнес не будет стабильным.
Независимо от того, существует ли у вас процесс прогнозирования продаж или вы начинаете с нуля создавать новый, эта статья научит вас пошаговому систематическому процессу создания и управления эффективным прогнозом продаж. Вы узнаете, как создавать правильные процессы, выбирать правильные методы и использовать соответствующие количественные и качественные данные для создания максимально точного прогноза продаж.
Прогнозирование продаж – это навык, который вы можете использовать практически в любой области вашего бизнеса. Наличие такого навыка сделает вас более ценным, независимо от того, на какой должности вы находитесь сегодня.
Содержание статьи:
- Понимание прогноза продаж
- Подготовка к прогнозированию продаж
- Использование количественного метода прогнозирования
- Использование качественного метода прогнозирования продаж
Данный материал предназначен для профессионалов в области управления продажами, управления маркетингом или для тех, кто хочет знать, что может произойти в будущем. Возможность составлять точные прогнозы продаж делает вас ценным членом команды, включая практически любую команду, в которой вы находитесь.
Перед началом изучения данного материала у вас должно быть базовое понимание маркетинга и того, как ваша компания генерирует продажи. Мы будем использовать Microsoft Excel для количественной части этого курса. Вам не нужно быть опытным пользователем Excel, но вы должны понимать основные операции, такие как ввод формул и как копировать и вставлять эти формулы в другие ячейки. Суть в том, что вам не нужно быть специалистом по количественным показателям или мастером Excel, чтобы получить пользу от этой статьи.
Понимание прогноза продаж
Прогноз продаж – это прогноз того, какими будут ваши результаты в качестве организации сбыта продукции в конце определенного периода времени. Он используется для многих целей, но прогнозирование продаж – это гораздо больше, чем просто разработка определенного набора цифр.
Прогнозирование заключается в управлении данными, насколько неправильным является ваш прогноз, а не насколько он верный. Расстояние между фактическими результатами и ожидаемыми результатами является риском для вашего бизнеса, и этот риск может быть значительным, даже разрушительным.
Если вы ожидаете высоких результатов, но не дотягиваете до них, вы застрянете с дополнительными запасами на руках, и это будет стоить вашей компании больших денег, которые могли бы быть использованы для лучших проектов. С другой стороны, представьте, что ваши реальные результаты намного выше, чем ваш прогноз. Теперь у вас может возникнуть ситуация, когда у вас закончится продукция. У вас возникают задержки, и вы начинаете терять клиентов.
Вот почему процесс прогнозирования продаж должен информировать организацию о том, что вы ожидаете, но, главное, какие непредвиденные обстоятельства могут произойти в случае неизбежных ошибок. Конечно, время от времени вы можете получить идеальный прогноз, но не рассчитывайте на него.
У вас должен быть план для устранения ошибок. Этот план может включать безопасный резерв продукции, на случай, если клиент захочет сделать непредвиденный заказ. Или, возможно, вам понадобится команда дистрибьюторов, которая со скидкой сможет выкупить ваш резерв.
Другими словами, посмотрите на каждое последствие того, что ваш прогноз может быть слишком оптимистичным или пессимистичным, и разработайте способ смягчения этого последствия. Таким образом, ваш процесс прогнозирования помогает компании работать лучше, а также защищает компанию от неопределенности.
Прогнозирование продаж является одним из наиболее важных процессов в компании, потому что с ним связано множество отделов бизнеса. Давайте посмотрим, почему прогнозирование продаж так важно:
- Во-первых, влияние прогноза продаж на финансовое планирование бизнеса. Например, прогнозы влияют на цены акций и возможность привлечения новых инвестиций.
- Во-вторых, прогнозирование продаж влияет на то, как компания создает и управляет своим отделом продаж. Прогнозы продаж будут использоваться для определения территории продаж, установления квот для каждого торгового представителя и для измерения производительности.
- В-третьих, другие отделы компании полагаются на точные прогнозы продаж. Например, операционный отдел будет принимать важные решения на основе прогнозов продаж. Если вы производитель, вы решаете, сколько продукции производить каждый день, основываясь на тех же прогнозах.
- В-четвертых, сфера услуг, такие как розничная торговля, банковское обслуживание и общественное питание, решают, сколько сотрудников им нужно каждый день для обслуживания прогнозируемого объема клиентов.
- В-пятых, прогнозы продаж могут повлиять даже на управление людьми. Они влияют на то, как и когда вы нанимаете новых людей, и на любое увеличение или уменьшение заработной платы.
- В-шестых, если компания хочет развиваться за счет приобретения другой компании, ей потребуется точный прогноз продаж целевой компании, чтобы решить, сколько за нее заплатить.
Теперь вам должно быть очевидно, что руководители уделяют так много внимания прогнозированию продаж из-за его далекоидущих последствий. Прогнозирование продаж – это систематический процесс, включающий различные бизнес-функции. Вот почему первым шагом в этом процессе является создание правильной команды.
Так кто же должен участвовать в процессе прогнозирования продаж? Конечно, большинство компаний будут полагаться на команду управления продажами. Они ежедневно управляют торговыми представителями, у них есть много информации о ваших клиентах и конкурентах, которые могут быть использованы в прогнозировании.
Но, хотите верьте, хотите нет, но ваша команда по продажам может не подходить для прогнозирования. Дело в том, что вы можете оказаться в отрасли, где другие отделы, например, отдел маркетинга, лучше разбираются в разработке прогнозов.
Как правило, ваша межфункциональная группа по прогнозированию продаж должна включать финансовый отдел. У них есть много данных о прошлых результатах продаж и расходах в различных областях бизнеса для достижения этих результатов.
Маркетинг предоставляет важную информацию о тенденциях рынка, маркетинговой стратегии, поведении покупателей и позиционировании. Эта информация необходима вам для оценки вероятности конвертации потенциальных клиентов. Операционный отдел производит продукт или услугу и имеет в наличаи свои полезные данные и знания для более подробного прогноза.
После того как вы определили ключевых игроков в своей команде, убедитесь, что они знают о вашем графике планирования, знают свою роль, понимают ожидания, которые вы возлагаете на каждого из них при разработке хорошего прогноза продаж.
Теперь рассмотрим основные шаги прогнозирования:
- Сначала проанализируйте рынок. В какой вы категории? Насколько велик рынок, какие тенденции, а также как динамика рынка влияют на будущие результаты?
- Соберите данные. Вам нужно собирать только те данные, которые имеют отношение к прогнозу. Вы также должны учитывать данные, которые хотели бы иметь, но у вас их нет. В таком случае вы делаете предположения.
- Определитесь с техникой, которую вы будете использовать. Качественная, количественная или комбинация двух?
- Проверьте ваш прогноз. Проведите свою модель прогнозирования через прошлые циклы продаж и посмотрите, как она выполняется. Есть ли какие-то корректировки, которые необходимо внести для точной настройки прогноза?
Хорошие прогнозы не являются просто предположением. Они являются результатом дисциплинированного и многофункционального подхода.
Подготовка к прогнозированию продаж
Ваш подход к прогнозированию продаж должен соответствовать маркетинговому плану вашей компании. Сначала вам нужно определить свою рыночную нишу, т.е. пространство в котором вы конкурируете. Вы можете определить это пространство более глобально или, наоборот, более узко, но более сфокусировано.
Например, предположим, вы производите линию продуктов для чистки зубов. Вы можете определить свою нишу на очень глобальном уровне здоровья полости рта. Это говорит о том, что вы предлагаете все виды продуктов, такие как зубные щетки, зубная паста, зубная нить, отбеливание зубов и все остальное. Когда вы определяете рыночную нишу таким образом, происходят две вещи:
- Во-первых, вы предоставляете себе очень широкие возможности для рынка, решая множество специфических задач с помощью широкого спектра продуктов. Но это также означает, что вы сталкиваетесь с широким кругом конкурентов, борющихся за одних и тех же клиентов.
- Во-вторых, вы можете определить свою нишу более узко. Возможно, до определенного уровня, скажем, отбеливание зубов. Этот узкий охват означает, что вы стремитесь к меньшим возможностям на рынке, но с гораздо большей концентрацией внимания и меньшей конкуренцией.
Так что это баланс между возможностью продаж и жесткостью конкуренции, с которой вы сталкиваетесь. Вот почему для прогнозирования продаж мы рекомендуем собраться с вашим маркетинговым отделом, чтобы понять, как они определяют различные рыночные ниши, в которых вы конкурируете.
Далее, для каждой рыночной ниши вы должны понимать тенденции, которые происходят внутри нее. Есть только три направления: продажи растут, продажи снижаются или продажи не меняются. Кажется, все просто, но недостаточно знать направление тренда. Вы должны также попытаться понять причины, т.е. почему сейчас именно такой тренд. Это поможет вам составить более точный прогноз продаж.
Например, представьте, что продажи на вашем рынке растут. В таком случае лучше понять причины, чтобы не быть слишком самоуверенным. Продажи могут быть вызваны определенным трендом, который со временем прекратится. Или, возможно, клиенты или дистрибьюторы запасаются продуктами, вызывая временное увеличение продаж. Более точное прогнозирование продаж составляется тогда, когда прогнозист знает рыночную нишу и реальные причины изменений на этом рынке.
Вы можете подумать, что создали точный прогноз продаж, основанный на достоверных данных и методах прогнозирования, но на рынке, а также внутри вашей компании может многое произойти, что может повлиять на ваш прогноз.
- Во-первых, вы можете быть удивлены тем, что делает ваш конкурент. Что если они запустят отличный новый продукт, который лучше, чем ваш? Или, возможно, они снижают цену или проводят специальную акцию на свою линейку продукции? Может произойти и обратное. Что если у вашего конкурента негативный отзыв на продукт или другое неблагоприятное событие, которое выводит их продукцию с рынка? Сейчас это может показаться хорошей новостью, но вы и ваши коллеги должны скорректировать прогноз и быстро отреагировать. Если вы этого не сделаете, вы можете исчерпать запасы из-за внезапного увеличения спроса, и это может негативно повлиять на ваших постоянных клиентов.
- Во-вторых, на продажи вашей компании также могут повлиять правовые, нормативные или политические изменения. Представьте, что вы работаете в пищевой промышленности, и регулирующий орган объявляет о новом положении, которое ограничивает то, что вы можете продавать? Или представьте себе результат политических выборов, который сделает ваши товары более продаваемыми.
- Теперь, пожалуй, самая сложная вещь в прогнозировании – это изменение структуры покупательской активности. Следующее поколение потребителей может не захотеть покупать ваши товары в том виде, который пользуется спросом у нынешних постоянных клиентов, или, они будут покупать их в меньшем объеме. Здесь нужно снова корректировать ваш прогноз.
- Изменения в технологии могут также повлиять на ваш прогноз продаж. Когда такая компания, как Apple, объявляет о том, что она отказывается от 3,5-миллиметровых гнезд для наушников или использует USB-порт последнего поколения, все компании, поддерживающие эти устаревшие функции, должны пересмотреть свои прогнозы продаж.
- В вашей компании также могут происходить вещи, которые могут повлиять на ваш прогноз продаж. Ваша компания может изменить свою общую коммерческую стратегию, что может помешать или помочь продажам продуктов, которые она производит. Например, отдел маркетинга может решить провести крупную рекламную кампанию или продвигать продукцию на новые рынки.
Как только вы определите свою рыночную нишу и поймете динамику рынка, настало время сконцентрироваться на составлении прогноза продаж. Существует множество методик и пакетов программного обеспечения, поэтому вы должны определить тот, который подходит именно вам.
Методы прогнозирования продаж делятся на две большие категории. Качественный метод, основанный на данных от людей, и количественный метод, основанный на показателях числовых данных, но, честно говоря, лучшие прогнозисты полагаются на комбинацию обоих.
Вот несколько вопросов, которые вы можете задать себе при выборе метода прогнозирования:
- Насколько хорошо вы понимаете свой рынок?
- Он растет или уменьшается и почему?
- Есть ли новые потребительские, конкурентные или технологические тренды?
- Это сезонный бизнес?
Если вы не очень много знаете о своем рынке и происходящих важных изменениях, вы можете использовать качественный метод, который опирается на советы экспертов.
Количественный метод часто использует исторические данные, такие как предыдущие данные о продажах и доходах, производственные и финансовые отчеты, а также статистику посещаемости сайта. Например, анализ данных о сезонных продажах может помочь компании спланировать на следующий год производственные потребности и человеческие ресурсы на основе прошлогодних месячных или квартальных показателей.
Количественный метод также использует прогнозы, основанные на статистическом моделировании, анализе тенденций или другой информации из экспертных источников, таких как правительственные учреждения, торговые ассоциации и даже академические учреждения.
Качественное прогнозирование включает в себя сочетание количественных и качественных методов. Главное для вас – это справиться с последствиями ошибки, поэтому минимизируйте риск, выбирая лучшую технику для вашей ситуации.
Использование количественного метода прогнозирования
Прогнозирование продаж с использованием количественных методов означает, что вам необходимо иметь исторические данные о продажах. То, что вам удалось продать в прошлом, может быть очень хорошим показателем того, что вы сможете продавать в будущем. Каждый период времени, когда ваша компания продавала свои продукты и услуги, происходило множество событий, с точки зрения конкурентных действий, потребительских тенденций и даже изменений в экономике в целом.
Исторические данные, которые вы используете для прогнозирования продаж, должны быть чистыми. То есть ваши данные должны быть точны, они не искажены событиями, которые были вне вашего контроля, т.к. это маскирует истинные и фактические результаты продаж за определенный период.
Для тех методов, которыми мы собираемся поделиться, вам нужно как можно больше данных о прошлых продажах. Обратитесь в финансовый или IT-отдел, чтобы они вам помогли собрать самые точные и полные данные, которые доступны. После этого вам следует очистить эти данные от множества переменных, которые ведут к неточностям прогноза.
Для начала убедитесь, что вы понимаете периоды времени, которые ваша компания использует для регистрации продаж. Эти данные могут быть ежедневными, еженедельными, ежемесячными, ежеквартальными или даже ежегодными. Если у вас имеется такая возможность, тогда используйте ежеквартальные данные. Исследования показали, что этот период времени дает более точные результаты прогноза.
Затем нанесите данные на график о продажах и посмотрите на них визуально. Спросите себя: «Что здесь происходит?». Если вы видите дикие колебания в данных, т.е. слишком высокие продажи или слишком низкие, попробуйте выяснить, что произошло.
В ваших данных могут быть и другие искажения. Например, ваша компания может регистрировать продажи по полной прейскурантной цене, тогда как фактические денежные поступления намного меньше из-за скидок. Скидки, которые вы предлагаете от месяца к месяцу, могут существенно отличаться. Методы, о которых вы узнаете далее, могут решить проблему такого типа.
Далее, избавьтесь от данных, которые представляют период, который не отражает ваш текущий бизнес. Если вы приобретаете бизнес в результате которого заявленные продажи растут, вы можете либо проигнорировать результаты продаж до приобретения, либо использовать два отдельных набора данных для прогнозирования продаж и сложить их вместе.
Теперь перейдем непосредственно к самим методам количественного прогнозирования. Простой, но эффективный метод прогнозирования продаж – это метод, который мы называем ролловер (roll-over). Его легко использовать, потому что техника делает всю работу за вас. Нет расчетов, нет догадок.
Вот как работает прогноз ролловер. Прогноз на следующий период времени – это просто фактические результаты продаж за последний период. Другим словами, для прогнозирования продаж вы берете фактические результаты продаж за один период, например, в прошлом месяце, и делаете это же число своим прогнозом на следующий месяц.
Но как такой подход может быть точным? Как и в случае с любой другой техникой прогнозирования, эта методика будет иметь определенный уровень ошибки, но вы будете удивлены, насколько этот подход может быть очень эффективным для многих бизнес-моделей.
Если вы работаете в довольно стабильном бизнесе с небольшой сезонностью или, вообще без нее, эта техника может вам подойти. И что самое важное в данном методе – независимо от того, насколько он точен, его результаты могут служить ориентиром для сравнения с другими методами прогнозирования.
Давайте посмотрим, как рассчитать погрешность между фактическими и прогнозируемыми продажами. В столбце C вы найдете фактические результаты за 24 месяца. В столбце D вы увидите прогнозируемые результаты ролловера, которые являются фактическими результатами предыдущего месяца. Например, вы можете видеть, что прогноз ролловер на февраль такой же, как и в январе – 4398 единиц.
Теперь, чтобы определить среднюю погрешность, мы собираемся вычесть прогноз ролловер из фактических результатов. Мы будем использовать функцию абсолютного значения (=ABS), потому что нам все равно, положительная или отрицательная разница. Здесь у нас есть разница между фактическим результатом и прогнозируемым результатом за период. Мы можем перетащить эту ячейку вниз, чтобы быстро рассчитать оставшиеся погрешности по всем месяцам.
Наконец, мы хотим найти среднюю погрешность для прогноза ролловер. Мы будем использовать функцию (=СРЗНАЧ) и выделим все погрешности по всем месяцам. Получается, что округленная среднемесячная погрешность составляет 1420 единиц продукции. Это довольно хорошо, в зависимости от того, что может выдержать ваша бизнес-модель. Давайте помнить об этом числе, когда будем оценивать другие методы прогнозирования, чтобы понять, сможем ли мы его улучшить.
С помощью метода ролловер вы используете только фактические результаты продаж текущего месяца, чтобы спрогнозировать следующий. По сути, вы предполагаете, что все, что вы знаете о будущем месяце, основано только на том, что вы узнали в этом. Но это не совсем так. Если у вас есть результаты прошлых продаж в течение нескольких месяцев, у вас есть возможность учиться у каждого месяца. Это может улучшить точность вашего прогноза.
Например, что если вы взяли последние четыре месяца фактических продаж, рассчитали среднее значение и использовали это среднее в качестве прогноза на следующий месяц? Другими словами, если вы прогнозируете продажи на май, вы должны рассчитать средние фактические продажи за январь, февраль, март и апрель. Для прогноза на июнь вы снова будете использовать средние фактические продажи за предыдущие четыре месяца: февраль, март, апрель и май.
Этот метод называется прогнозом скользящего среднего. Среднее число движется от месяца к месяцу. Посмотрим, работает ли он лучше, чем наш предыдущий метод.
Мы начнем с расчета скользящей средней за май. Для этого мы сначала подведем итоги за четыре месяца, то есть с января по апрель, а затем, разделим на четыре. Скользящая средняя составляет 5 534.
Далее, мы вычисляем среднюю погрешность, вычитая скользящее среднее из фактических результатов с помощью функции абсолютного значения (=ABS). Похоже, что наша средняя погрешность составила 988 единиц.
Теперь рассчитаем среднюю погрешность за все месяцы. Мы снова перетаскиваем ячейку скользящего среднего на последний месяц и сделаем то же самое со средней погрешностью. Мы так же используем функцию =СРЗНАЧ и найдем среднюю погрешность за весь период. Она составила 1312 единиц, что уже лучше, чем 1420, которые мы получили с помощью метода ролловер.
Но что, если характер вашего бизнеса таков, что в последние месяцы квартала вы имеете наибольший объем продаж? Другими словами, в эти месяцы прослеживается наибольшая динамика на вашем рынке. Здесь вам необходимо делать упор на последние месяцы. Этот метод называется взвешенным скользящим средним.
Вот как рассчитать взвешенное скользящее среднее за май месяц:
1. Во-первых, мы используем фактические продажи за январь-апрель, как и раньше, но теперь мы хотим решить, какой вес должен иметь каждый месяц. Мы думаем, что в апреле получим 40% веса, март – 30%, февраль – 20%, а январь – 10%. Мы выбрали эти проценты произвольно, но вы можете поэкспериментировать, опираясь на вашу статистику продаж, чтобы найти то, что лучше для вас.
2. Во-вторых, вычислим взвешенное скользящее среднее в Excel. Сначала мы умножаем фактические результаты за январь на 0,1, затем добавляем фактические результаты за февраль и умножаем на 0,2, еще добавляем фактические результаты за март, умноженные на 0,3, и, наконец, добавляем фактические результаты за апрель, умноженные на 0,4. Нажимаем Enter и получаем 5 754 единиц.
3. В-третьих, когда у нас уже есть прогноз взвешенной скользящей средней, давайте посмотрим, в чем сейчас заключается погрешность, через вычитание полученного результата 5754 с фактического результата мая месяца.
4. В-четвертых, просчитаем среднюю погрешность за два года. Для этого потянем обе формулы до последнего месяца. Мы получили результат 1257, что еще лучше предыдущих результатов. Это говорит о том, что последние месяцы действительно отражают то, что происходит в нашем бизнесе.
Мы возьмем последнюю модель. В конце концов, более точный прогноз позволяет нам и нашей команде лучше управлять планами действий на случай непредвиденных обстоятельств, а именно этим и занимается прогнозирование продаж – управление рисками и возможностями нашего бизнеса.
Мы хотим показать вам еще одну методику количественного прогнозирования, потому что она популярна у опытных прогнозистов и дает очень хорошие результаты в большинстве ситуаций. Данный метод называется экспоненциальным сглаживанием (ЭС).
Вот основная идея. Используя метод взвешенного скользящего среднего, мы использовали лишь несколько предыдущих точек данных, чтобы вычислить среднее значение в качестве нашего прогноза на следующий период. Мысль здесь заключается в том, что последние месяцы обладают большим весом, с точки зрения рыночных факторов.
Что если бы был способ собрать все данные о продажах за предыдущие месяцы, но сделать это таким образом, чтобы сгладить большие максимумы и минимумы в наших данных? По сути, это устраняет то, что мы называем «шумом» наших данных.
Это легко рассчитать. Нам нужно только три показателя. Продажи за текущий период, прогноз на текущий период и весовой коэффициент для текущего периода, точно такой же, как мы использовали для взвешенной скользящей средней. Только теперь это число будет называться сглаживающим фактором.
Вот как это рассчитать. Возьмем фактические продажи за последний период, умноженные на коэффициент сглаживания. Добавьте к этому прогноз самого последнего периода, умноженный на один минус коэффициент сглаживания.
ЭС=(ФП×КС) + (ПП×(1−КС))
ФП – соответствует фактическим продажам за последний период;
КС – равно коэффициенту сглаживания, представленному в десятичной форме. Давайте использовать тот же вес из последнего примера 0,4;
ПП – соответствует прогнозу самого последнего периода. Другими словами – это результат вычисления сглаживания из предыдущего периода, т.е. ЭС предыдущего месяца.
Используя скользящую среднюю и метод ролловер, мы предполагаем, что каждый результат продаж содержит некоторое предвидение относительно будущих результатов. Теперь мы также учитываем не только прошлые фактические результаты, но и все прошлые прогнозы. Другими словами, мы предполагаем, что прошлые прогнозы тоже могут поделиться с нами о будущем прогнозе.
Рассчитаем среднее экспоненциального сглаживания в Excel. В электронной таблице Excel мы начнем со столбца J. Поскольку январь – наш первый месяц в наборе данных, мы возьмем фактические результаты за январь и предположим, что это прогноз. Итак, мы возьмем 4398 с января месяца и перенесем это же число в ячейку J3. Чтобы рассчитать прогноз на февраль, мы умножим фактические результаты предыдущего месяца на 0,4, а затем добавим прогноз предыдущего месяца, умноженный на 0,6. Опять же, эти числа выбираются произвольно, и вы можете выбрать показатели, которые больше подходят вам под бизнес-модель.
Далее, мы вычислим абсолютную погрешность, вычитая фактические результаты по прогнозу экспоненциального сглаживания.
Мы еще раз перетащим обе эти формулы до последнего месяца. Наконец, мы рассчитаем среднее значение ошибки для сравнения с другими методами прогнозирования. У нас получилась средняя погрешность равна 1229 единиц, что еще немного лучше предыдущих результатов.
Экспоненциальное сглаживание не только легко, но и отлично реагирует на новые тенденции или сезонность в вашем бизнесе. Этот метод быстро реагирует на изменения на рынке, сохраняя при этом лучший результат предвидения из всех перечисленных методик.
Использование качественного метода прогнозирования продаж
Прогнозирование продаж опирается на поведение клиентов, а именно, что клиенты будут делать или не будут делать в течение определенного периода времени, поэтому имеет смысл применить ориентированный на клиента подход к прогнозированию. Это значит смотреть на два вида данных: что вы знаете о своих клиентах и что ваши клиенты знают о себе.
Начнем с первого. Анализируя любой рынок, вы хотите сгруппировать клиентов по четырем типам:
- Клиенты, которые уже покупают у вас. На самом деле, они не только покупают у вас, они покупают исключительно у вас, и никогда у конкурентов.
- Вторая группа похожа на первую в том, что они в настоящее время покупают ваши товары и услуги. Разница в том, что эти клиенты также покупают товары у ваших конкурентов. Почему? Потому, что для некоторых категорий продуктов клиенты хотят выбора. Например, рынок одежды. Вы почти наверняка носите одежду от разных производителей. Рынок продуктов питания является еще одним примером.
- Третья группа клиентов – это те, кто покупает исключительно у ваших конкурентов, а не у вас. По крайней мере, пока.
- Четвертая группа клиентов – это те, кто не покупает ваш тип продукта у кого-либо. Они называются потребителями без категории. Эти потенциальные клиенты очень важны, потому что их приобретение дает вам новый источник дохода. Вместо того чтобы просто брать долю рынка у конкурента, получение таких клиентов помогает вам увеличить свой рынок.
Теперь вам нужно оценить потенциальное количество клиентов, которых вы могли бы привлечь для каждого из этих четырех типов.
- Сначала вы оцениваете общее количество клиентов для каждого типа.
- Затем вы делаете предположения о том, какой процент вы можете переманить на свою сторону. В прогнозировании продаж мы называем это подходом к прогнозу сверху вниз. Вы сначала оцениваете клиентов из первых групп, а затем думаете, чем вы можете привлечь остальных из последних двух категорий.
Второй ориентированный на клиента подход к прогнозированию прост: спросите своих клиентов, что они ожидают у вас заказать в ближайший период. Конечно, это зависит от вашей отрасли, но вы будете удивлены, насколько клиенты смогут и захотят рассказать вам об ожидаемых расходах на предстоящий год.
Вы можете подумать, что потенциальные клиенты не захотят тратить на это время. Тогда дайте им оптовую скидку или другой стимул, чтобы сообщить вам о своих намерениях. Даже если это не на 100% точно, это все же хорошая информация. Прогнозирование – это управление погрешностями и клиенты могут сделать многое, чтобы помочь вам.
Торговые представители и ваши дистрибьюторы обладают уникальными, близкими к рынку взглядами, что может принести дополнительную пользу в прогнозировании продаж. Вот как это можно использовать.
Во-первых, попросите своих представителей и дистрибьюторов дать вам оценку общего годового объема продаж на их территории. Затем попросите их разбить эту сумму по месяцам или кварталам. Этот шаг хорош тем, что он заставляет их распределять общее количество по меньшим периодам времени. Это заставляет их действительно задуматься об оценках, которые они вам дают.
Теперь совет. Самый большой риск, связанный с тем, чтобы спрашивать представителей и дистрибьюторов об оценках продаж заключается в том, что вряд ли они будут проводить различие между прогнозом и квотой продаж. Торговые представители предпочли бы торговую квоту ниже, чем то, что может продаться на рынке. В этом есть смысл. Кому нужна квота продаж, которая не может быть достигнута?
Это одна из основных причин, по которой вы хотите использовать комбинацию качественных и количественных методов прогнозирования. Использование нескольких методов поможет вам обнаружить эту проблему.
Когда вам дают оценки от торговых представителей и дистрибьюторов, самое важное, что вы понимаете, какие предположения они использовали для оценки. Например, каковы их предположения о новых или утерянных клиентах, новых конкурентах, ценовых изменениях, новых маркетинговых инициативах, новых продуктах и т. д.
Наконец, вы можете рассмотреть возможность использования простого математического метода, называемого анализом ожидаемых значений. Ожидаемое значение – это ожидаемый прогноз для данной территории. ОЗ рассчитывается путем умножения каждого из возможных результатов на вероятность каждого результата, а затем суммирования всех этих значений.
Как это сделать. Попросите вашего представителя или дистрибьютора предоставить вам приблизительные продажи по каждому клиенту, и вероятность их достижения. Вероятность означает, что прогноз будет достигнут от 1% до 100%.
Давайте предположим, что у представителя пять клиентов, и он предоставляет вам всю информацию. Ожидаемое значение является прогнозом, основанным приведенном выше уравнении. Таким образом, в этом уравнении вы умножаете вероятность прогноза на каждого клиента, а затем складываете все вместе.
Использование анализа ожидаемых значений, скорее всего, даст прогноз с меньшей ошибкой, чем просто запрос представителей дать общий годовой прогноз. Подход ОЗ использует их скрытые знания о том, что происходит на их территории и эти знания могут помочь вам сделать лучшие прогнозы продаж.
Для некоторых отраслей лучший способ прогнозировать продажи – использовать группу экспертов. Это люди, которые имеют широкий спектр знаний в вашей отрасли. Вы можете работать на рынке, который является сезонным или непредсказуемым из-за факторов, связанных с экономикой или политическим климатом. Именно здесь экспертная оценка может помочь уменьшить ваши ошибки в прогнозировании.
Например, давайте представим, что вы занимаетесь строительными материалами. Ваша компания производит товары для строительства новых домов, а вы продаете товары новым подрядчикам. Это прекрасный пример отрасли, на которую влияют такие экономические факторы, как доверие потребителей, процентные ставки и демографические тенденции.
Прогнозирование продаж может быть сложным и дорогостоящим, если вы ошибаетесь. Чтобы создать группу экспертов, ищите людей, которые имеют разнообразное и уникальное представление об этой отрасли. Например, вы можете включить людей, которые работают в сфере ипотеки. Вы также можете включить экспертов по недвижимости, которые отслеживают движение рынка покупки жилья. Они дают важную информацию о покупателях и строительных компаниях, которые могут помочь вам с вашим прогнозом.
Когда вы создали группу экспертов, вы должны решить, какую информацию вы хотите от них получать. Хотите ли вы, чтобы оценка строительства нового дома базировалась на национальном, региональном или вашем рынке? Хотите ли вы получать ежегодные, ежеквартальные или ежемесячные данные?
Старайтесь определить, к какой группе экспертов лучше всего обращаться. Любая группа будет иметь разные уровни знаний и опыта, что помогает нейтрализовать искажения в данных. Когда вы получите их индивидуальные прогнозы строительства новых домов в следующем году, вы обнаружите, что все они разные, иногда совсем другие.
Вот совет: главное, не индивидуальный прогноз от каждого члена группы, а то, какие предположения они сделали, чтобы сделать этот прогноз. Вам больше всего нужны их предположения, потому что именно здесь вы найдете самые важные идеи о том, как разработать свой прогноз. На основании их предположений вы сможете решить, какие из них наиболее важны, а какие следует свести к минимуму или, возможно, даже игнорировать. Возьмите важные предположения и найдите способ проверить их.
Как и все методы прогнозирования, речь идет о точности по сравнению с нашей контрольной отметкой – прогнозом по методу ролловер. Вам необходимо отслеживать, как работают эксперты, по сравнению с простым ежемесячным подходом прогнозирования и решить, смогут ли эксперты дать более надежный результат.
Заключение
Правильное прогнозирование продаж – это несложный процесс, просто он требует немного времени для получения правильных данных и применения нескольких простых методов. Чем лучше вы становитесь в этом процессе, тем больше вы помогаете своей компании расти и оставаться конкурентоспособной.
Что еще интересного почитать
Содержание
- 1 Метод 1. Анализ динамики продаж
- 1.1 Пример
- 2 Метод 2. АВС анализ
- 2.1 Пример
- 3 Метод 3. Равномерность спроса (XYZ)
- 3.1 Пример
- 4 Метод 4. Анализ структуры чека
- 4.1 Пример
- 5 Метод 5. Анализ по матрице BCG
- 5.1 Пример
- 6 Метод 6. Контрольный анализ объема продаж
- 6.1 Пример
- 7 Метод 7. Факторный анализ продаж
- 7.1 Пример
- 8 Метод 8. Анализ рентабельности
- 8.1 Пример
- 9 Метод 9. Анализ клиентской базы
- 9.1 Пример
- 10 Метод 10. Экспертный анализ
- 10.1 Пример
- 11 Коротко о главном
Рассмотреть продажи со стороны объемов, динамики, структуры и ассортимента помогут широко известные методы анализа продаж. Кстати, почти ко всем анализам эффективности продаж я подготовила готовые шаблоны в excel, так что пользуйтесь на здоровье.
Метод 1. Анализ динамики продаж
Цель – выявление общего состояния фактических объемов продаж по сравнению с прошлыми периодами.
Шаблон для расчетов (скачать по ссылке): Анализ динамики продаж.
С помощью этого метода выявляется рост или снижения продаж. Анализ динамики проводится по показателю выручки, но можно использовать и другие инструменты анализа продаж: клиентская база, рост прибыли и др. Формула для расчета:
Темп роста продаж = (Выручка текущего периода / Выручка прошлого периода) * 100
Если темп роста:
- Более 100% – положительная динамика продаж;
- Равен 100% – ситуация, при которой продажи не изменились;
- Меньше 100% – снижение объемов продаж.
Специальной программы для анализа продаж нет, но не спешите расстраиваться, ведь все достаточно просто считается excel.
Пример
Рассмотрим как сделать анализ динамики продаж на примере интернет-магазина. Данные в таблице ниже.
Показатель | 2017 | 2018 | Темп роста, % |
Выручка, руб. | 3 000 | 3 500 | 116,67 |
Так, в 2018 году темп роста продаж интернет-магазина составил 116,67 % по сравнению с 2017 годом. Мы видим, что динамика продаж положительная.
Метод 2. АВС анализ
Цель – выявить долю того или иного продукта в общем объеме продаж.
Шаблон для расчетов (скачать по ссылке): Анализ ABC
Этот инструмент широко используется в розничной торговле и позволяет увидеть, какое торговое направление генерирует выручку, а какие группы товаров совсем плохо продаются и не приносят выгоды бизнесу.
Основой для расчета является прибыль или выручка на конкретную группу товаров или определенный продукт. Результаты анализа продаж товаров помогают принимать решения в области ассортиментной политики.
В основе метода АВС лежит известный принцип Парето: 80% всей выручки приносят 20% проданных товаров. По результату все анализируемые товары разделятся на три группы:
- Группа А. Двигатели торговли, занимают долю от 0 до 80% выручки нарастающим итогом;
- Группа В. Товары, спрос на которые хорош, но выручки на них приходится от 81% до 95% нарастающим итогом;
- Группа С. Товары этой группы имеют долю свыше 96% выручки нарастающим итогом, приносят мало прибыли, являются нерентабельными.
Пример
Рассмотрим метод АВС анализа на примере продаж небольшой розничной торговой точки. Исходные данные можете посмотреть в готовой таблице.
Наименование | Объем продаж, тыс. руб. | Доля продаж, % | Доля продаж нарастающим итогом, % | Категория АВС |
Бакалея | 15 000 | 44 | 44 | А |
Напитки | 10 000 | 29 | 74 | А |
Кондитерские изделия | 6 000 | 18 | 91 | В |
Мясо | 2 000 | 6 | 97 | С |
Рыба | 1 000 | 3 | 100 | С |
По анализу продаж продукции видно, что самые прибыльные группы товаров – бакалея и напитки, а рыба и мясо являются не рентабельными.
Метод 3. Равномерность спроса (XYZ)
Цель – определить, на какие товары спрос будет стабильным.
Шаблон для расчетов (скачать по ссылке): Анализ XYZ
С помощью анализа продаж этим методом можно сэкономить бюджет и время, отказавшись от продажи товаров, на которые не будет спроса. Кстати, отлично подходит для анализа розничной продажи товаров.
Этапы анализа следующие: составляется список товаров и выручки, которую приносит товар. Данные заносятся в таблицу эксель и с помощью формул определяется коэффициент вариации. Затем товарам присваивается категория X, Y или Z.
- Группа X. Товары с коэффициентом от 0% до 10%;
- Группа Y. Товары с коэффициентом от 10% до 25%;
- Группа Z. Товары с коэффициентов вариации больше 25%.
Простыми словами, коэффициент вариации – это возможное отклонение величин. Так вот, отклонение спроса сказывается на продажах, что создает сложности при достижении плановых показателей.
Нужен маркетинговый анализ?
Закажите его у нас
Стратегия
продвижения
Отличия от
конкурентов
Типы клиентов и их
критерии выборов
Динамика и
тенденции рынка
и ещё огромное количество другой информации
Узнать подробнее
Пример
Рассмотрим как сделать анализ продаж методом XYZ на примере специализированного магазина сладостей. Отчет анализа продаж в таблице ниже.
Товар | Объем продаж январь | Объем прода февраль | Объем продаж март | Объем продаж апрель | Объем продаж май | Объем продаж июнь | Объем продаж июль | Коэффициент вариации | Категория XYZ |
Конфеты | 70 | 65 | 80 | 68 | 75 | 76 | 73 | 7% | X |
Подарочные наборы | 20 | 42 | 36 | 37 | 28 | 40 | 18 | 28% | Z |
Пирожные | 34 | 17 | 26 | 25 | 30 | 18 | 23 | 23% | Y |
Видим, что спрос на шоколадные конфеты является наиболее стабильным, от месяца к месяцу он может измениться в пределах 7%. А вот спрос на подарочные наборы отклоняется в пределах 28%.
Метод 4. Анализ структуры чека
Цель – выявить количество определенного товара на конкретной торговой площадке (торговая точка, товарная полка, магазин).
Данный вид анализа продаж актуален для крупных федеральных компаний, дистрибьюторов, розничных и оптовых торговых сетей. При применении этого метода исследуется несколько показателей:
- Лист MML (minimum must list) – минимально необходимый ассортимент, список товаров, состоящий из нескольких ключевых SKU;
- Среднее SKU (Stock Keeping Unit) – единица товара, конкретная ассортиментная позиция.
С помощью учетных систем можно получить отчет, который покажет, сколько SKU в среднем продается в торговой точке. Чем выше показатель среднее SKU, тем больше представленность на рынке. И если Вы считаете вручную, то вот формула:
Среднее SKU = Сумма проданных SKU в каждую торговую точку / Общее количество торговых точек.
Рост среднего SKU свидетельствует о расширении представленности в торговой точке Вашей продукции, рост спроса на Ваш ассортимент. Именно поэтому показатель нужно рассматривать в динамике.
Пример
Нужно вычислить, сколько конкретных позиций продается в среднем по нашей клиентской базе. Допустим, мы – очень крупный оптовик, и у нас есть 5 постоянных клиентов.
Клиент | 1 | 2 | 3 | 4 | 5 |
SKU | 4 | 4 | 4 | 10 | 10 |
Теперь считаем среднее SKU = (4 * 3 + 10 * 2) / 5 = 6,4.
И далее необходимо смотреть динамику. Если в предыдущих расчетах показатель был меньше, значит компания на правильном пути. Если же наоборот больше, то стоит разработать сбытовые мероприятия.
Метод 5. Анализ по матрице BCG
Цель – определение приоритетных товарных групп, которые в последствие принесут наибольший доход.
Шаблон для расчетов (скачать по ссылке): Анализ BCG
Данный метод основан на расчете следующих показателей: доля рынка товара, темпы роста рынка для этого товара и объем продаж.
После расчетов товары в зависимости от доли рынка и темпов роста рынка распределяются в матрице. Объем продаж отображается с помощью кружков. Результаты анализа оформляются в матрицу BCG, образец ниже.
Матрица BCG
Далее для каждого товара принимаем соответствующую стратегию развития. Её определить легко помогает расположение товаров внутри матрицы:
- Звезда. Наиболее продаваемые товары, приносящие наибольший доход. Это тренд, как, например, любая суперзвезда, только на полке в магазине. Стратегия: сохраняем лидерство;
- Дойная корова. Товары, которые без инвестирования могут приносить неплохой доход. У этих товаров более стабильный жизненный цикл, чем у звезд. Стратегия: получаем прибыль и сохраняем позиции;
- Вопрос. Товары, с которыми непонятно что делать: инвестировать в них и доводить до ума, либо же навсегда избавляться. Стратегия: инвестируем дополнительные средства;
- Собака. Категория товаров, которые требуют постоянных вложений, но при этом их рентабельность очень низкая. Затраченные на них силы не окупаются. Стратегия: снижаем активность или выводим товар с рынка.
Пример
Делать анализ будем на примере ООО “Тортик”. Компания специализируется на торговле шоколадными конфетами ручной работы, пирожными, мороженным и дизайнерскими тортами.
Представим, что мы уже провели расчеты и по оси координат определили какой товар куда попадает и получили следующие результаты:
- Шоколадные конфеты – это “собаки”. Они дорого обходятся клиентам, однако и себестоимость у них высокая. Такой товар не выгоден для компании;
- Пирожные – это “дойные коровы”. Они стабильно приносят высокий доход. Позиции стоит укрепить;
- Торты – это “звезды”. Сейчас это модное кондитерское направление, ООО “Тортик” получает высокие доходы от их продажи;
- Мороженное – это “вопрос”. Это сезонный товар, объем продаж не стабилен. Можно вложить деньги в расширение ассортимента или сделать акцент на другие группы товаров.
Метод 6. Контрольный анализ объема продаж
Цель – выявить отклонение между постигнутыми фактовыми показателями по продажам от запланированных.
Шаблон для расчетов (скачать по ссылке): Контрольный анализ объема продаж.
На каждую товарную группу выставляются план продаж на день, на неделю, на месяц и год, а затем производится оценка выполнения планов. Подходит для розничных продаж товаров и для оптовых.
Базой для расчетов при этом методе анализа продаж выступает выручка, прибыль, рентабельность и прочие запланированные показатели, отражающие результативность продаж.
Пример
Рассмотрим достижение планов на примере компании, которая торгует цветами.
Допустим, на 2018 год были выставлены следующие плановые показатели: объем продаж роз – 2 000 руб., лилий – 3 000 руб., фиалок – 1 500 руб. Остальные показатели можете посмотреть в готовой таблице ниже.
Показатель | План 2018 | Факт 2018 | % вып | Факт 2017 | % 18/17 |
Продажи в руб. | 6 500 | 7 600 | 117% | 7 200 | 106% |
Розы | 2 000 | 2 300 | 115% | 2 000 | 115% |
Лилии | 3 000 | 3 400 | 113% | 3 300 | 103% |
Фиалки | 1 500 | 1 900 | 127% | 1 900 | 100% |
По
результатам продаж 2018 года можно сделать вывод, что произошло перевыполнение
плана на 27% по продаже фиалок, а по сравнению с 2017 годом – план по фиалкам
выполнен на 100%.
Метод 7. Факторный анализ продаж
Цель – выявить, какие факторы оказывают влияние на объем продаж и в какой степени.
Шаблон для расчетов (скачать по ссылке): Факторный анализ.
Для проведения факторного анализа, необходимо понимать, что такое выручка и что зависит она от цены на предлагаемый товар и объемов сбыта. Цена в свою очередь зависит от затрат.
Так, шаг за шагом, выявляются факторы, которые оказывают влияние на объем продаж. Анализ происходит путем сравнения двух периодов (текущего к прошлому).
Кстати. Хотите увеличить продажи вдвое и повысить эффективность бизнеса? Тогда скорее внедряйте CRM! Рекомендую Битрикс 24 и Мегаплан (“Megastart” скидка 10% на все + 14 дней бесплатно). Потом спасибо скажете.
Пример
ИП Иванов Иван Иванович занимается продажей товаров в розничной сети. Выручка растет быстрее, чем прибыль от продаж. Как узнать, с помощью чего можно увеличить прибыль, имея стандартные данные о продажах?
Значение | Объем реализации (т. руб.) за прошлый год | Объем реализации (т. руб.) за отчетный год |
Выручка | 80 000 | 83 000 |
Себестоимость | 50 000 | 56 000 |
Коммерческие расходы | 3 000 | 7 000 |
Управленческие расходы | 5 000 | 4 000 |
Прибыль от продаж | 22 000 | 16 000 |
Индекс изменения цен | 1 | 1,133 |
Объем продаж в сопоставимых ценах | 80 000 | 732 56 |
В
результате факторного анализа выявлено:
- Из-за снижения объемов продаж, прибыль снизилась на 2 582 т. руб.;
- Из-за увеличения ассортимента, прибыль выросла на 1 708 т.руб.;
- Из-за повышения себестоимости, прибыль снизилась на 11 869 т. руб.;
- Из-за увеличения коммерческих расходов, прибыль снизилась на 4 000 т. руб.;
- Из-за снижения управленческих расходов, прибыль увеличилась на 1 000 т. руб.;
- Из-за влияния цен продажи, прибыль увеличилась на 9 743 т. руб.
Так можно увидеть слабые места бизнеса и сделать акцент на влияния тех или иных факторов, ведь задача любого бизнеса в том, чтобы прибыль росла.
Метод 8. Анализ рентабельности
Цель – определить эффективность продаж с экономической точки зрения.
Шаблон для расчетов (скачать по ссылке): Анализ рентабельности.
Для
анализа рентабельности необходимо иметь данные плана рентабельности, а также фактические
данные. Как правило, планы выставляются, согласно имеющегося бизнес-плана или
на основе прошлых периодов.
Рентабельность продаж даст понимание того, сколько можно получить прибыли с одного рубля выручки. Данный показатель должен быть больше нуля. Определяется по формуле:
Рентабельность продаж = Прибыль от продаж / Выручка
В результате
такого анализа, выставляются планы на следующие периоды, а также осуществляются
мероприятия по повышению рентабельности продаж.
Лайфхак. Если Вы хотите держать руку на пульсе, то очень рекомендую сервис аналитики Comagic.ru. К тому же там есть супер-фишки по генерации лидов.
Пример
Рассмотрим как сделать анализ продаж по рентабельности на примере компании, которая торгует розами, лилиями и фиалками.
Показатель | План 2018 | Факт 2018 | % вып | Факт 2017 | % 18/17 |
Рентабельность % | 55% | 56% | 102% | 55% | 1% |
Розы | 51% | 50% | 98% | 51% | -1% |
Лилии | 50% | 50% | 100% | 50% | 0% |
Фиалки | 49% | 50% | 102% | 49% | 1% |
Так, наиболее
рентабельным направлением продаж являются продажи роз, они генерируют больше
всего прибыли, однако план по рентабельности не выполнен. А вот по фиалкам план
перевыполнен на 2 процента.
Метод 9. Анализ клиентской базы
Цель – выявлять темпы прироста клиентов, а также степени проработки имеющейся базы.
Шаблон для расчетов (скачать по ссылке): Анализ клиентской базы.
Объем клиентов, которые совершили покупку (то есть конечных потребителей), прямо влияет на объем продаж и полученную прибыль.
Клиент – это человек, который платит компании свои деньги. Он хочет получить качественный товар или услугу за справедливую плату. В случае, если клиенту не подходит качество товара, цена или сервис, то сделка не состоится, продажа не пройдет.
Именно поэтому очень важно отслеживать состояние Вашей клиентской базы, а именно:
- Число ОКБ – общая клиентская база. Это общее число клиентов, которым Вы когда-либо продавали товар или у Вас имеются договоренности о будущей продаже;
- Число АКБ – активная клиентская база. Это число клиентов, которые совершили покупку в определенный период или по конкретной товарной группе.
По этим двум показателям, можно отслеживать приток новых договоров, что говорит о потенциальном повышении объема продаж.
Пример
Отдел продаж с января по июнь заключил 2 100 договоров, т.е. у компании теперь общая клиентская база в 2 100 клиентов.
Период | ОКБ | АКБ | Доля,% |
Январь | 100 | 76 | 76,00 |
Февраль | 200 | 120 | 60,00 |
Март | 300 | 190 | 63,33 |
Апрель | 400 | 280 | 70,00 |
Май | 500 | 420 | 84,00 |
Июнь | 600 | 510 | 85,00 |
Итого: | 2 100 | 1 700 | 80,95 |
Однако можно увидеть, что за этот период купили товар только 80,95% клиентов. Лучше всего клиентская база была проработана в июне, на 85%.
Метод 10. Экспертный анализ
Цель экспертного анализа
– это экспресс-оценка анализа продаж.
Шаблон для расчетов (скачать по ссылке): Экспертный анализ факторов
Данный вид анализа дает очень субъективные результаты, особенно, когда он проводится постоянно с использованием одних и тех же экспертов, не заинтересованных в достоверности данных.
Хороший эффект от использования этого метода анализа продаж достигается, если проводить опрос клиентской базы, то есть контрагентов внешней среды фирмы.
Для этого выявляются факторы, а затем опрашиваются эксперты или клиенты. Согласно их оценке, каждому фактору выставляется оценка, затем они группируются и в результате Вы получаем сводную таблицу факторов, на которые нужно обратить внимание.
Экспертный анализ
применяется, когда нужно проанализировать внешнюю и внутреннюю среду
организации. Экспертами могут выступать как руководители фирмы, так и рядовые,
но компетентные сотрудники и клиенты.
Пример
Компания размышляет, что может повысить продажи быстро с помощью двух факторов: расширение ассортимента или расширение клиентской базы.
Описание фактора | Вес | Экспертная оценка 1 | Экспертная оценка 2 | Экспертная оценка 3 | Экспертная оценка 4 | Экспертная оценка 5 | Средняя оценка | Оценка с поправкой на вес |
Расширение ассортимента | 1 | 5 | 4 | 3 | 5 | 4 | 4,2 | 0,35 |
Рост клиентов | 2 | 1 | 3 | 2 | 3 | 3 | 2,4 | 0,40 |
В данной модели влияние
фактора задается цифрой от 1 до 3. Как видно из таблицы, рост клиентов для нас
наиболее значим, чем ассортимент.
По мнению экспертов,
расширение ассортимента имеет наибольшую среднюю оценку (4,2), однако с
поправкой на влияние фактора, первое место занимает рост клиентов.
Коротко о главном
Можно сделать один большой вывод,
что для эффективного управления продажами, необходимо анализировать:
Объект анализа | Методы |
Деньги (прибыль, выручка, рентабельность) | Анализ рентабельности продаж, факторный анализ продаж, анализ динамики продаж |
Клиенты (число и структура) | Анализ клиентской базы |
Процессы (эффективность закупок и сбыта, выкладка продукции, структура чека) | Анализ товарных остатков, анализ равномерности спроса контрольный анализ (план-факт) |
Ресурсы (товарные остатки, персонал, ассортимент) | Анализ структуры продаж, анализ структуры чека, анализ товарных групп BCG |
Аналитика по продажам очень обширна и учитывает практически все внутренние сферы деятельности компании. Не забывайте, что все процессы в той или иной мере влияют на объем продаж и прибыль.
Чем более качественно ведется анализ продаж, тем выше вероятность для компании выйти на более высокие показатели эффективности. И важно помнить, что именно от продаж зависит выручка и прибыль организации.
Источник